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Perf Eval of Comp Systems

5. System of RVs: jointly distributed RVs

Basic notes:

• sometimes it is required to investigate two or more RVs;

• we assume that RVs X and Y are defined on some probability 
space.

• Capital letters (i.e. X, Y ) are random variables

and small letters (i.e. 𝑥,  𝑦 are given constants)

Lecture: Reminder of probability 2
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5. System of RVs: jointly distributed RVs

Definition: joint probability distribution function (JPDF) of RVs X and Y is:

(78)

For continuous RV.,   Let us define:

x, y ∈ R, (79)

𝐹𝑋 (𝑥)and 𝐹𝑌 (𝑦) are called marginal PDFs.

Marginal PDF can be derived form JPDF: 

marginalize=neutralize=summing up to 1

(80)

Lecture: Reminder of probability

𝐹𝑋𝑌 (𝑥, 𝑦) = 𝑃𝑟{𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦}
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𝐹𝑋 (𝑥) = 𝑃𝑟{𝑋 ≤ 𝑥} 𝐹𝑌 (𝑦) = 𝑃𝑟{𝑌 ≤ 𝑦}

𝐹𝑋 (𝑥) = lim
𝑦→∞

𝐹𝑋𝑌 (𝑥, 𝑦) = 𝐹𝑋𝑌 (𝑥,∞)

𝐹𝑌 (𝑦) = lim
𝑥→∞

𝐹𝑋𝑌 (𝑥, 𝑦) = 𝐹𝑋𝑌 (∞, 𝑦)



Perf Eval of Comp Systems

Lecture: Reminder of probability

(a) The joint probability distribution and 

(b) the joint distribution function.
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Perf Eval of Comp Systems

Definition: if𝐹𝑋𝑌 (𝑥, 𝑦) is differentiable then the following 
function:

(81)

is called joint probability density function (jpdf).

𝑓𝑋𝑌 𝑥, 𝑦 =
𝑑2

𝑑𝑥𝑑𝑦
𝐹𝑋𝑌 𝑥, 𝑦

= 𝑃𝑟{𝑥 ≤ 𝑋 ≤ 𝑥 + 𝑑𝑥, 𝑦 ≤ 𝑌 ≤ 𝑦 + 𝑑𝑦}

Lecture: Reminder of probability
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Assume then that X and Y  are discrete RVs.

Definition: joint probability mass function (Jpmf) of discrete RVs X and Y is:

(82)

Let us define:

(83)

• these functions are called marginal probability mass functions (Mpmf).

Marginal pmfs can be derived from Jpmf:

(84)𝑓𝑥 𝑥 = 

∀𝑦

𝑓𝑋𝑌 𝑥, 𝑦 , 𝑓𝑌 𝑦 =

∀𝑥

𝑓𝑋𝑌 𝑥, 𝑦

Lecture: Reminder of probability

𝑓𝑌 𝑦 = Pr{𝑌 = 𝑦}𝑓𝑋 𝑥 = Pr{𝑋 = 𝑥}

𝑓𝑋𝑌 𝑥, 𝑦 =Pr{𝑋 = 𝑥, 𝑌 = 𝑦}
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رد، از جمله می توان جرم تک تک مولفه ها را بدست آو( یا تابع توزیع احتمال توأم) با داشتن تابع توزیع  توأم 
.ولی برعکس این موضوع درست نیست. تابع توزیع حاشیه ای

𝑃(𝑋به عبارت دیگر با داشتن  = 𝑥𝑖) و𝑃(𝑌 = 𝑦𝑗) نمی توان𝑃(𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗) ،را بدست آورد
.ولی برعکس آن ممکن است

𝑃 𝑋 = 𝑥𝑖 =
𝑗
𝑃(𝑥𝑖 , 𝑦𝑗)

.توزیع کناری بدست می آید2البته اگر پیشامدها مستقل باشند، به راحتی توزیع توأم از روی حاصلضرب 

.و میخواهیم سه باطری انتخاب کنیم{5=و خراب4=، کارکرده3=نو} : نوع باطری داریم3: مثال

𝑃 𝑖, 𝑗 = 𝑃 𝑋 = 𝑖, 𝑌 = 𝑗 =?

𝑃 0,0 =

5
3
12
3

=
10

220

𝑃 0,1 =

4
1

5
2

12
3

=
40

220

پیشامدها ቊ
𝑋 =
𝑌 =

باطری برداشته شده نو باشد
باطری برداشته شده کارکرده باشد

داریم احتمال آنکه صفر باطری سالم سه باطری برمی
احتمال اینکه هر سه باطری. )باشدکارکردهو صفر باطری 

.(خراب باشد

.یک باطری کارکرده و دو تای دیگر خراب باشد
(صفر باطری سالم) 



j
i 𝒀 = 𝟎 𝒀 =1 𝒀 =2 𝒀 =3 𝑷(𝑿 = 𝒊)

𝑿 = 𝟎
10

220

40

220

30

220

4

220

84

220

𝑿 = 𝟏
30

220

60

220

18

220
0

108

220

𝑿 = 𝟐
15

220

12

220
0 0

27

220

𝑿 = 𝟑 1 0 0 0
1

220

𝑷(𝒀 = 𝒋)
56

220

112

220

48

220

4

220
1

pmf متغیرx با جمع سطری وpmf متغیرy با جمع ستونی بدست می آیدو چون این اطلاعات از روی حاشیه
.می گویندyوxجدول بدست می آید، به آن ها توزیع های حاشیه ای ( کناره ها)ها 



𝑃:1نکته  𝑋 𝑌 = 𝑦توزیع احتمال است.

:مثالی از احتمال شرطی


𝑥
𝑃 𝑋 𝑌 = 2 =

𝑃 0,2

𝑃 𝑌 = 2
+

𝑃 1,2

𝑃 𝑌 = 2
+

𝑃 2,2

𝑃 𝑌 = 2
+

𝑃 3,2

𝑃 𝑌 = 2
= 1

=

30
220
48
220

+

18
220
48
220

+
0

48
220

+
0

48
220

==
30

48
+
18

48
= 1

𝑃(𝑌:2نکته  = یک احتمال است و توزیع احتمال نیست، چون مقدار آن (2
48

220
.است

𝑃پس  𝑋 𝑌 = 𝑦توزیع احتمال است.

.توزیع های حاشیه ای یک خلاصه ای از یک توزیع توأم است: 3نکته 



Perf Eval of Comp Systems

5.1. Conditional distributions and Mean (on Events / RV)

Discret RV            Definition: the following expression:

, (85)

• gives conditional PF of discrete RV X given that Y = y.

Conditional mean of RV X given Y = y can be obtained as:

(86)

Continous RV       Definition: the following expression:

, (87)

• gives conditional pdf of continuous RV X given that  𝑌 = 𝑦.

Conditional mean of RV X given Y = y from the following expression:

(88)

Lecture: Reminder of probability

E[X|Y = y] =

∀𝑖

𝑥𝑖 𝑃𝑟X|Y{x|y}

E X Y = y = න
−∞

∞

𝑥𝑓X|Y 𝑑𝑥

𝑓X|Y 𝑥|𝑦 =
𝑓XY 𝑥, 𝑦

𝑓Y 𝑦

𝑃𝑟X|Y . , 𝑦 = 𝑃𝑟X|Y . |𝑦 = 𝑓X|Y . , 𝑦 = 𝑓X|Y . |𝑦 =
Pr {X = ∀,Y = y}

Pr {Y = y}

10

𝑓Y 𝑦 >0



5.1. Conditional distributions and Mean (conditioning by event / RV)

Conditional CDF:

𝐹X|Y 𝑥|𝑦 = 𝑃𝑟 𝑋 ≤ 𝑥|𝑌 ≤ 𝑦 =
Pr {X ≤ x,Y ≤ y}

Pr {Y ≤ y}
=
𝐹X,Y 𝑥, 𝑦

𝐹Y 𝑦

Conditional pdf:

𝑓X|Y 𝑥|𝑦 = lim
∆𝑦→0

𝑓𝑋 𝑥|𝑌 ≈ 𝑦 = lim
∆𝑦→0

𝜕

𝜕𝑥
𝐹𝑋 𝑥|𝑌 ≈ 𝑦 =

𝑓X,Y 𝑥, 𝑦

𝑓Y 𝑦

Note:

𝑓X|Y 𝑥|𝑦 ≠
𝜕

𝜕𝑥
𝐹𝑋 𝑥|𝑦

Since the condition in pdf is Y=y and the condition in cdf is 𝑌 ≤ 𝑦

Lecture: Reminder of probability 11

𝑓Y 𝑦 >0
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yates page 82

Ref. book: Probability and Stochastic Processes: A Friendly 
Introduction for Electrical and Computer Engineers 2nd Edition
by David J. Goodman (Author), Roy D. Yates (Author)

https://www.amazon.com/David-J-Goodman/e/B001H6NAX0/ref=dp_byline_cont_book_1
https://www.amazon.com/Roy-D-Yates/e/B00H4N6N0M/ref=dp_byline_cont_book_2
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yates p161
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yates page 165

eg applying Fubini’s theorem in calculating the 
expectation of a RV as tail prob

https://www.youtube.com/watch?v=hcBiYZuST7U
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yates P175
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conditioning by event

Yates p178



17

continuous RV

Yates p178
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Conditioning by a Random Variable

Yates p181
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Yates p182
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Ref. book: Probability and Stochastic Processes: A Friendly 
Introduction for Electrical and Computer Engineers 2nd Edition
by David J. Goodman (Author), Roy D. Yates (Author)

https://www.amazon.com/David-J-Goodman/e/B001H6NAX0/ref=dp_byline_cont_book_1
https://www.amazon.com/Roy-D-Yates/e/B00H4N6N0M/ref=dp_byline_cont_book_2
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Yates p183



5.1. Conditional distributions and Mean (we saw Cond. Prob. Before)

Lecture: Reminder of probability 23

Mixture Distribution:(page 239 Trivedi 1st ed.)

Conditoional density (pmf) can be extended to the case where X is 
discrete RV and Y is continuous RV (or vice versa) 
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5.2. Dependence and independence of RVs

Recall the definition of independent events E and F:    P(EF)=P(E)P(F)
Definition: it is necessary and sufficient for two RVs X and Y to be independent:

𝐹𝑋𝑌(𝑥, 𝑦) = 𝐹𝑋(𝑥)𝐹𝑌(𝑦) for all x,y (89)

• 𝐹𝑋𝑌(𝑥, 𝑦) is the JPDF(=JCDF);

• 𝐹𝑋(𝑥) and 𝐹𝑌(𝑦) are PDFs (CDFs) of RV X and Y .

Definition: it is necessary and sufficient for two continuous RVs X and Y to be independent:
𝑓𝑋𝑌(𝑥, 𝑦) = 𝑓𝑋(𝑥)𝑓𝑌(𝑦) for all x,y

(90)

• 𝑓𝑋𝑌 𝑥, 𝑦 is the jpdf;

• 𝑓𝑋(𝑥) and 𝑓𝑌(𝑦) are pdfs of RV X and Y .

Definition: it is necessary and sufficient for two discrete RVs X and Y to be independent:
𝑝𝑋𝑌(𝑥, 𝑦) = 𝑝𝑋𝑌(𝑋 = 𝑥, 𝑌 = ∀)𝑝𝑌(𝑋 = ∀, 𝑌 = 𝑦) for all x,y

(91)

• 𝑝𝑋𝑌(𝑥, 𝑦) is the Jpmf;

• 𝑝𝑋(𝑥)and 𝑝𝑌(𝑦) are pmfs (discrete RV) or pdfs (continuous RV)) of RV X and Y .

Lecture: Reminder of probability 24
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Lecture: Reminder of probability 25

2.     p(D1=1,S=5)?

≠ p(D1=1)p(s=5)

1.  p(D1=1,S=7)?

= p(D1=1)p(s=7)

Let: D1, D2 be the outcomes of two rolls:
S=D1+D2. the sum of two rolls 

Each roll of a 6-sided die is an independent trial,
D1,D2 are independent.
Are S ands D1  independent? No
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26

Let: D1, D2 be the outcomes of two rolls:

S=D1+D2. the sum of two rolls 

• Each roll of a 6-sided die is an independent trial,

• D1,D2 are independent.

Are S ands D1  independent? 

1. p(D1=1,S=7)?

Event (S=7) : {(1,6),(2,5),(3,4), 

(4,3),(5,2),(6,1)} 

p(D1=1)p(S=7)=(1/6)(1/6)

=1/36 =p(D1=1,S=7)

2. p(D1=1,S=5)?

Event (S=5) : {(1,4), (2,3), 

(3,2),(4,1)}

p(D1=1)p(S=5)=(1/6)(4/36)

≠ 1/36=p(D1=1,S=5)

Independent events (D1=1),(S=7)

Dependent events (D1=1),(S=5)

All events (X=x,Y=y) must be independent for X,Y to be 
independent variables.
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5.3. Measure of dependence

Sometimes RVs are not independent:

• as a measure of dependence correlation moment (covariance) is used.

Definition: covariance of two RVs 𝑋 and 𝑌 is defined as follows:

𝜎𝑋𝑌 = 𝐾𝑋𝑌 = 𝑐𝑜𝑣 𝑋, 𝑌 = 𝐸[(𝑋 − 𝐸 𝑋 )(𝑌 − 𝐸 𝑌 )] (92)

• where from definition , we find that 𝐾𝑋𝑌 = 𝐾𝑌𝑋 .

One can find the covariance using the following formulas:

• assume that RV X and Y are discrete:

(93)

• assume that RV X and Y are continuous:

(94)

Lecture: Reminder of probability

𝐾𝑋𝑌 = 

𝑖



𝑗

(𝑥𝑖 − 𝐸[𝑋])(𝑦𝑗 − 𝐸[𝑌 ])𝑃𝑟{𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗}

𝐾𝑋𝑌 = න
−∞

∞

න
−∞

∞

(𝑥𝑖 − 𝐸[𝑋])(𝑦𝑖 − 𝐸[𝑌 ])𝑓𝑋𝑌 (𝑥, 𝑦)𝑑𝑥𝑑𝑦
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It is often easy to use the following expression :

𝜎𝑋𝑌 = 𝐾𝑋𝑌 = 𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸[𝑌] (95)

Problem with covariance: can be arbitrary in (−∞, ∞):

• problem: hard to compare dependence between different pair of RVs;

• solution: use correlation coefficient to measure the dependence between RVs.

Definition: correlation coefficient of RVs X and Y is defined as follows:

(96)

1 ≤ ρ𝑋𝑌 ≤ 1
• if ρ𝑋𝑌 ≠ 0 then RVs X and Y are correlated and hence dependent;

• Example: assume we are given RVs X and Y such that Y = aX + b:

ρ𝑋𝑌 =+1 a>0

ρ𝑋𝑌 = −1 a<0
(97)

Lecture: Reminder of probability

ρ𝑋𝑌 =
𝐾𝑋𝑌

σ[X]σ[Y ]
= 

𝜎𝑋𝑌

σ[X]σ[Y ]

28
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Very important note:

• ρXY is the measure telling how close the dependence to linear.

Question: what conclusions can be made when ρXY = 0? They are uncorrelated

•or RVs X and Y are not LINEARLY dependent;

• when ρ𝑋𝑌 = 0 is does not mean that they are independent.

independent RV dependent RV

uncorrelated RV correlated R

Fig: Independent and uncorrelated RVs.

What ρXY says to us:

•ρ𝑋𝑌 ≠ 0: two RVs are correlated and also dependent;

• ρ𝑋𝑌 = 0 : one can suggest that two RVs MAY BE independent;

• ρ𝑋𝑌 = +1 or ρ𝑋𝑌 = −1 : RVs X and Y are linearly dependent.

Lecture: Reminder of probability 29
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5.4. (Expectations of product and Expectations of Sum ) of correlated RVs

Mean:

• the mean of the product of two correlated RVs X,Y:

𝐸 𝑋𝑌 = 𝐸 𝑋 𝐸 𝑌 + 𝐾𝑋𝑌 (98)

• the mean of the product of two uncorrelated RVs X,Y:

𝐸 𝑋𝑌 = 𝐸 𝑋 𝐸 𝑌 (99)

Variance:

• the variance of the sum of two correlated RVs X,Y:

𝑉 𝑋 + 𝑌 = 𝑉 𝑋 + 𝑉 𝑌 + 2𝐾𝑋𝑌 (100)

• the variance of the sum of two uncorrelated RVs X,Y:

𝑉 𝑋 + 𝑌 = 𝑉 𝑋 + 𝑉 𝑌 (101)

Lecture: Reminder of probability 30

















• Linear Correlation

• Correlation is said to be linear if the ratio of change is constant.
When the amount of output in a factory is doubled by doubling
the number of workers, this is an example of linear correlation.

• In other words, when all the points on the scatter diagram tend
to lie near a line which looks like a straight line, the correlation
is said to be linear. This is shown in the figure on the left below.

• Non Linear (Curvilinear) Correlation

• Correlation is said to be non linear if the ratio of change is not
constant. In other words, when all the points on the scatter
diagram tend to lie near a smooth curve, the correlation is said
to be non linear (curvilinear). This is shown in the figure on the
right below.

•

38



6. Pdf of Sum of independent RVs

We consider independent RVs X and Y  with probability functions:

𝑃𝑋 𝑥 = Pr 𝑋 = 𝑥 , 𝑃𝑌 𝑦 = Pr 𝑌 = 𝑦 (102)

PMF of RV Z, Z = X + Y  is defined as follows (i.e. for independent RVs X and 

Y, convolution operation.)

Pr 𝑍 = 𝑧 = σ𝑘=−∞Pr 𝑋 = 𝑘 Pr{𝑌 = 𝑧 − 𝑘} (103)

• if 𝑋 = 𝑘, then, 𝑍 take on 𝑧 (𝑍 = 𝑧) if and only if  𝑌 = 𝑧 − 𝑘. 

If RVs X and Y  are continuous:

𝑓𝑍 𝑧 = 𝑓𝑋 (𝑥)⨀𝑓𝑌 (𝑦) = ∞−
∞

𝑓𝑋(𝑧 − 𝑦)𝑓𝑌 (𝑦)𝑑𝑦 = ∞−
∞

𝑓𝑌(𝑧 − 𝑥)𝑓𝑋 (𝑥)𝑑𝑥 (104)

Exercise:  CDF of sum of 2 independent RVs :𝑭𝒛 𝔃 = 𝑭𝒙 𝔃 ⨀𝒇𝒚 𝔃
= 𝒇𝒙 𝔃 ⨀𝑭𝒚 𝔃

Q: what is pdf of the sum of two RVs generally
Lecture: Reminder of probability 39
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7. The distribution of max and min of independent random variables

Let X1, . . . , Xn be independent random variables

(distribution functions Fi(x) and tail distributions Gi(x), i = 1, . . . , n)

(105)

(106)

Distribution of the maximum
P{max(X1, . . . , Xn) ≤ x} = P{X1 ≤ x, . . . , Xn ≤ x}

= P{X1 ≤ x} · · · P{Xn ≤ x} (independence!)
= F1(x) · · · Fn(x)

Lecture: Reminder of probability 50

Distribution of the minimum
P{min(X1, . . . , Xn) > x} = P{X1 > x, . . . , Xn > x}

= P{X1 > x} · · · P{Xn > x} (independence!)

= G1(x) · · · Gn(x)



Joint Cumulative Distribution Functions
Appendix: General Case: Let X1, X2, . . .Xk be continuous random variables

i. Their joint Cumulative Distribution Function, F(x1, x2, . . .xk) defines 
the probability that simultaneously X1 is less than x1, X2 is less than x2, 
and so on; that is

i. The cumulative distribution functions F1(x1), F2(x2), . . .,Fk(xk) of the 
individual random variables are called their marginal distribution 
function. For any i, Fi(xi) is the probability that the random variable Xi

does not exceed the specific value xi.

iii. The random variables are independent if and only if

)(),,,( 221121 kkk xXxXxXPxxxF = 

)()()(),,,(

lyequivalent 

)()()(),,,(

221121

221121

kkk

kkk

xfxfxfxxxf

or

xFxFxFxxxF
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