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STOCHASTIC PROCESSES 

Basic concepts 

Often the systems we consider evolve in time and we are interested in their dynamic 
behavior, usually involving some randomness. 

• the length of a queue 

• the number of students passing the course “computer networks” each year 

• the temperature outside 

• the number of data packets in a network 
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Random Variables

• Random variables map the outcome of a random experiment to a number.
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Stochastic (Random) Processes (movement)

Stochastic Processes map
the outcome of a random
experiment to a signal
(function of time).
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A stochastic process evaluated at a
particular time is a random 
variable
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stochastic processes
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Typical ensemble members for four random processes commonly
encountered in communications (a) thermal noise (b) uniform phase. (c)
Rayleigh fading process and (d) binary random data process.



STOCHASTIC PROCESSES 

A stochastic process Xt(𝜉)(or X(t, 𝜉)) is a family of random variables indexed by a 
parameter t (usually the time). 

time

X(t, 𝜉)

a sample path

a random variable for each fixed t

t

X(t, 𝜉𝑛)

X(t, 𝜉2)

X(t, 𝜉1)
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STOCHASTIC PROCESSES 

Basic notions 

Formally, a stochastic process is a mapping from the sample space S to functions of t. With 
each element 𝜉 of S is associated a function Xt(𝜉). 

• For a given value of 𝜉, Xt(𝜉) is a function of time 
(this is a sample path)

(ensemble : Xt(𝜉) for all outcomes of sample space 𝜉)

• For a given value of t, Xt(𝜉) is a random variable 
({Xt(𝜉)} for different t): this view is a collection of RVs and 

thus RP is defined by all joint CDFs for all possible set of times.

• For a given value of 𝜉 and t, Xt(𝜉) is a (fixed) number

The function Xt(𝜉) associated with a given value 𝜉 is called the realization of the stochastic 
process (also trajectory or sample path). 

(“a lottery ticket e with a plot of 
a function is drawn from an urn”) 
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Classification of Stochastic Processes

State space: the set of possible values of Xt

Parameter (e.g. time) space: the set of values of t 

Stochastic processes can be classified according to whether these spaces are discrete 
or continuous: 

• discrete-state process → chain 

• discrete-parameter (e.g. discrete-time) process → stochastic sequence {Xn | n є T} 
(e.g., probing a system every 10 ms.)
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STOCHASTIC PROCESSES 

Example 1. A random process is of the form of sinusoid x(n) = Acos(nω0 ) 
where A∈Ω = { 1,2,.., 6 }, the amplitude is a random variable that assumes 
any integer number between one and six, each with equal probability 
Pr(A=k)=1/6 (k=1, 2, …, 6). 

This random process consists of an ensemble of six different discrete-time 
signals xk(n) ,

x1(n) = cos(nω0) , x2 (n) = 2cos(nω0) , … x6(n) = 6cos(nω0) ,
each of which shows up with equal probability.
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STOCHASTIC PROCESSES 

Question: Given a random process x(n) = A(n) cos(nω0) , where the 
amplitude A(n) is a random variable (at instant n) that assumes any integer 
number between one and six, each with equal probability, how many
equally probable discrete-time signals are there in the ensemble?
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SP-view 1 –collection of waveforms- Analytic description

A random process as in the 
figure has an ensemble of 
different discrete-time 
signals, each occurring 
according to a certain 
probability. From a sample 
space point of view, to each 
experimental outcome
ωi in the sample space, 
there is a corresponding 
discrete-time signal xi(n) 
(i.e. sample path). 
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SP-view 2 –Sequence of RVs- Statistical description

at a certain ‘fixed’ time instant n, e.g., n = n0
, the signal value x(n0 ) is a RV that is defined 
on the sample space and has an underlying 
CDF and pdf
𝐹𝑥 𝑛0 𝛼 = Pr{𝑥 𝑛0 ≤ 𝛼}, 

And

𝑓𝑥 𝑛0 𝛼 = 𝑑𝑓𝑥 𝑛0 𝛼 /𝑑𝛼

for a different n0 , x(n0) is a random variable 
at a different time instant. Therefore, a 
discrete-time random process is an indexed 
sequence of random variables x(n) that is an 
ensemble of elementary events xi(n) at n.
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In considering stochastic processes we are often interested in quantities like: 

• Time-dependent distribution: defines the probability that Xt takes a value in a 
particular subset of S at a given instant t

• Stationary distribution: Stationarity refers to time invariance of some, or all, 
of the statistics of a random process, such as mean, autocorrelation, n-th-
order distribution (We define two types of stationarity: strict sense (SSS) and wide 
sense (WSS))

• The relationships between Xs and Xt for different times s and t (e.g. 
covariance or correlation of Xs and Xt) 

• Hitting probability: the probability that a given state is S will ever be 
entered 

• First passage time: the instant at which the stochastic process first time 
enters a given state or set of states starting from a given initial state 
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Description of Random Processes

(Stochastic Process Characterization)
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Stochastic Process Characterization

• two types of descriptions:

• analytic expressions

• If the random process can be viewed as a collection of signals, 

In this description, analytic expressions are given for each sample in terms of one or 
more random variables; i.e., the random process is
given as X(t) = f (t; 𝝎) where 𝝎 = (𝜔1, 𝜔2, . . . , 𝜔𝑛) is, in general, a random vector
with a given joint PDF. This is a very informative description of a random process
because it completely describes the analytic form of various realizations of the process.

• statistical description
For real-life processes, it is hardly possible to give such a complete description.

If an analytic description is not possible, a statistical description may be appropriate. 
Such a description is based on the second viewpoint of random processes, regarding 
them as a collection of random variables indexed by some index set.
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Stochastic Process Characterization- statistical description 

• Definition 6.1. A complete statistical description of a random process X(t)
is known if for any integer n and any choice of (t1, t2, . . . , tn) ∈ Rn the joint PDF 
of (X(t1), X(t2), . . . , X(tn)) is given.
• If the complete statistical description of the process is given, for any n the joint density 

function of (X(t1), X(t2), . . . , X(tn)) is given by 
𝐹 𝒙; 𝒕 = 𝐹𝑋(𝑡1), . . ,𝑋(𝑡𝑛) 𝑥1, … , 𝑥𝑛 = 𝑃{𝑋(𝑡1) ≤ 𝑥1, … , 𝑋(𝑡𝑛) ≤ 𝑥𝑛}

• Definition 6.2. A process X(t) is described by its Mth order statistics if for all n 
≤ M and all (t1, t2, . . . , tn) ∈ Rn the joint PDF of (X(t1), X(t2), . . . , X(tn)) is given.
• important special case:

M = 2, in which second-order statistics are known. This simply means that, at each
time instant t, we have the density function of X(t), and for all choices of (t1, t2) the
joint density function of (X(t1), X(t2)) is given.
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• The nth order statistics of a stochastic process Xt is defined by the joint 
distribution 

𝐹 𝒙; 𝒕 = 𝐹𝑋(𝑡1), . . ,𝑋(𝑡𝑛) 𝑥1, … , 𝑥𝑛 = 𝑃{𝑋(𝑡1) ≤ 𝑥1, … , 𝑋(𝑡𝑛) ≤ 𝑥𝑛}

where,

𝒙 = (𝑥1 ,…, 𝑥𝑛)𝜖ℛ
𝑛

and 

𝒕 = (𝑡1 ,…, 𝑡𝑛)𝜖𝒯
𝑛

A complete characterization of a stochastic process Xt requires knowing the 
stochastics of the process of all orders n.

Stochastic Process Characterization- full description-n-th order statistics
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Once 𝑓𝑿(𝒕) 𝒙 is known, we might compute the probability of various events. 
E.g., we might calculate the probability of the random process X (t ) passing 
through a set of windows as shown in the Fig. 

Let A be the event:
A = {s :𝑎1 < 𝑋 𝑡1 ≤ 𝑏1, 𝑎2 < 𝑋 𝑡2 ≤ 𝑏2, 𝑎3 < 𝑋 𝑡3 ≤ 𝑏3,  } 

That is, the event A consists of all those sample points {sj} such that the 
corresponding sample functions {xj(t)} satisfy the requirement,𝑎𝑖 < 𝑋𝑗 𝑡𝑖
≤ 𝑏𝑖, for i=1, 2, 3 . We need to calculate P (A) . 

A typical sample function which

would contribute to P  (A )

is shown in the same figure.

Stochastic Process Characterization- full description-n-th order statistics
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P (A) can be calculated as

where x (t ) = X(t1) ,X(t2), X(t3) ,  
and d x = d x1 d x2 d x3

The above step can be generalized to the case of a random vector with n-
components.
This complete description of RP is virtually impossible to use for practical 
applications!
Usually make do with 1st and 2nd order PDF’s:

Stochastic Process Characterization- full description-n-th order statistics
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1st order statistics: 𝐹 𝑥1; 𝑡1 = 𝐹𝑋(𝑡1) 𝑥1 = 𝑃{𝑋(𝑡1) ≤ 𝑥1}

1st order statistics can be characterized (but not necessarily completely) by two parameters mean 
and variance

• The expected value, ensemble average or mean of a RP at time t is:

𝑋𝑡 = 𝐸 𝑋𝑡 = 𝑚𝑥 𝑡 = ∞−
∞
𝑥𝑡𝑝( 𝑥𝑡)dx

Mean: shows “center of concentration” of possible values of x(t) as a Function of time in 
general

• Variance of X(t)

𝜎𝑥(𝑡)
2 = 𝐸 (𝑥 𝑡 − 𝑚𝑥 𝑡 )2 = න

−∞

∞

(𝑥 𝑡 − 𝑚𝑥 𝑡 )2𝑝( 𝑥𝑡)dx

Shows a measure of expected range of variation 
around the mean, as a function of time in general

Q: What does the 1st order PDF’s tell us ?
Ans:  1st order 𝐹 𝑥1; 𝑡1 tells, as a function of time, what 
values are likely and unlikely to occur (tells the likelihood of 
values occurring at each given time) time, t

x(t)

x

T

x

Stochastic Process Characterization- full description-1st order statistics 22



2nd order statistics: 𝐹 𝑥1, 𝑥2; 𝑡1, 𝑡1 = 𝐹𝑋(𝑡1),𝑋(𝑡2) 𝑥1, 𝑥2 = 𝑃{𝑋(𝑡1) ≤ 𝑥1, 𝑋(𝑡2) ≤ 𝑥2}

we want sth to capture most of the  essence of the 2nd order PDF

• Covariance (auto covariance)𝐶𝑋 𝑡1, 𝑡2 = 𝐸[{𝑋𝑡1−𝑋𝑡1} {𝑋𝑡2−𝑋𝑡2}] = 𝑅𝑋 𝑡1, 𝑡2 −𝑚𝑋 𝑡1 𝑚𝑋
∗ 𝑡2

• The autocorrelation function (ACF) is:

𝑅𝑋 𝑡1, 𝑡2 = 𝐸 𝑋 𝑡1 𝑋 𝑡2 = න
−∞

∞

න
−∞

∞

𝑥1𝑥2𝑝𝑥( 𝑥1, 𝑥2 ; 𝑡1, 𝑡2)𝑑𝑥1𝑑𝑥2

Autocorrelation is a measure of how alike the random process is from one time instant to another.

time, t

x(t)



T

Q: What does the 2nd order PDF’s tell us ?
Ans 2nd Order PDF Characterizes “Probabilistic Coupling” 
between RP values at each pair of times t1 and t2

Example : What is the probability x(t1) and x(t2) are…
…. both Positive?
…. both Negative?
…. of Opposite Signs

Stochastic Process Characterization- full description-2nd order statistics 23



Specifying RPs in terms of n-th order statistics :  e.g.:

Gaussian Random process 

Sinusoid with random phase

IID processes

Specifying RPs in terms of 1st order statistics:

Specifying full desc. Of RPs using  2nd order statistics :

Markov processes

Specifying RPs in terms of moment 1 and moment 2:
e.g. Poisson ((see Papoulis)): note : for Poisson we may find full desc. As well

1st order statistics:  denote 𝑛 0, 𝑡 with 𝑛 𝑡

mean 𝐸 𝑋 𝑡 = 𝐸 𝑛 0, 𝑡 = 𝐸 𝑛 𝑡 = 𝜆𝑡

and variance  𝜎𝑥
2 = 𝐸 𝑥2 𝑡 − 𝐸 𝑋 𝑡 2 = 𝜆𝑡 since 𝐸 𝑥2 𝑡 = 𝐸 𝑛2 𝑡 = 𝜆𝑡 + 𝜆2𝑡2

2nd order statistics 𝑅𝑋 𝑡1, 𝑡2 = 𝐸 𝑛 𝑡1 𝑛 𝑡2 = 𝐸 𝑛 𝑡1 {𝑛 𝑡2 − 𝑛 𝑡1 + 𝑛 𝑡1 } = 𝐸 𝑛2 𝑡1 ] + 𝐸 𝑛 𝑡1 𝐸[𝑛 𝑡2 − 𝑛 𝑡1
= λt1 + λ2t1

2 +λt1 × λ(t2 − t1) = λt1 + λ2t1t2 assuming t2 ≥ t1
= λmin{t1, t2} + λ2t1t2 in general

Specifying whether a RP process is stationary ( strict sense or WSS)

Specifying whether a RP is ergodic ( mean-ergodic , egodic in correlation( covariance) , 

distribution ergodic ,…, Papoulis ch. 12)

Characterizing Stochastic processes: Highlight
24



Mean and Autocorrelation

• Finding the mean and autocorrelation is not as hard as it might 
appear! (although higher moments are not easy to derive)
• Since many times a stochastic process can be expressed as a function of a 

random variable ( you know functions of random variables).

• Example2: consider x(t)=Acos(2𝜋t+ ) , where  is a RV according to a 
given distribution and thus x(t) is just a function g() of :

• Q: Which of our two “view points” is easier to think of for this example?
1. Sequence of RVs???
2. Collection of Waveforms & Pick One???

• A : Clearly it is easier to view this random process as a collection of 
waveforms from which you randomly pick one
Remember!!! – Both Views are Still Correct

25



Mean and Autocorrelation-example 2

• Here are 4 realizations (sample functions) of the
ensemble of this process

Each one has a different
Phase

Which signal you get ? The 
signal is randomly chosen
according to the PDF of
Phase

26



Mean and Autocorrelation-example 2

• Looking at any one sample function doesn’t give the appearance of 
being a random process !

•
BUT IT IS RANDOM! You don’t know ahead of time which you were 
going to get.

•
In this case, randomness is best viewed as “not knowing which of 
the infinite possible sample functions you will get”

•
So… now we have a model for a practical signal scenario. Now 
What???
Do analysis to characterize the model !!!!

27



Mean and Autocorrelation-example 2

• Example2: consider x(t)=Acos(2𝜋t+ ) , where  is a RV according to a 
given distribution and thus x(t) is just a function g() of :

• To characterize this process:

• Task : Find the mean and the ACF of this process
& Ask: Is It WSS?

• We need to find the expected value of a function of a random 
variable: i.e. g( )=Acos(2𝜋t+ ) 

• To do so you need to know the pdf of .

E[x(t)]=E[g()]=E[Acos(2𝜋t+ )]

28



Example2 (Papoulis P.377)

x(t)=Acos(2𝜋t+ ), ~U(-, ):

mx(t)= 

E[Acos(2πt+θ)]=A−∞
∞

cos(2πt+θ)𝑝θ θ 𝑑θ

=A−π
π
cos(2πt+θ)

1

2π
𝑑θ

=A−π
π
{cos(2πt)cos(θ)− sin(2πt)sin(θ)}

1

2π
𝑑θ

=
𝐴

2π
cos(2πt) π−

π
cos(θ) 𝑑θ

+
𝐴

2π
sin(2πt)−π

π
sin(θ)𝑑θ=0

29



Example2 (Papoulis P.377)

x(t)=Acos(2𝜋t+ ), ~U(-, ):

Cos(a)cos(b)= ½{ cos(a + b) +cos(a – b)}

R(t1,t2)= E[Acos(2πt1+θ)A cos(2πt2+θ)]
= 𝐴2E[1/2{ cos(2π(t1+t2)+2θ) + cos(2π(t1-t2))}

=𝐴2 π−
π
1/2{ cos(2π(t1+t2)+2θ) + cos(2π(t1−t2)}𝑝θ θ 𝑑θ

=𝐴2 π−
π
1/2cos(2π(t1+t2)+2θ)

1

2π
𝑑θ+ 𝐴2 π−

π
1/2cos2π(t1−t2)

1

2π
𝑑θ

=0 +
𝐴2

4π
cos2π(t1−t2) π−

π
𝑑θ

=
𝐴2

2 cos2π(t1−t2)

𝑅 𝜏 =
𝐴2

2
cos2π(τ) where τ = (t1−t2)

Note1 we didn’t use joint pdf for R(t1,t2), since
we could separate the cosine multiplication
Note2 we see later that:  x(t) is WSS

Note3 the samples at time t1 and t2 are uncorrelated, 

not proved here
Autocorrelation function of a 
sinusoid with random phase

R(τ)=
𝐴2

2 cos(2πτ)

cos(A + B) = cosA cosB − sin A sin B 
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Stationary Processes
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Stationary Processes
• In a complete statistical description of a random processes, for any n, 

and any(t1, t2, . . . ,tn ), the joint PDF 
𝐹 𝒙; 𝒕 = 𝐹𝑋(𝑡1), . . ,𝑋(𝑡𝑛) 𝑥1, … , 𝑥𝑛 = 𝑃{𝑋(𝑡1) ≤ 𝑥1, … , 𝑋(𝑡𝑛) ≤ 𝑥𝑛}
is given. 

• This joint PDF in general depends on the choice of the time origin.

• In a very important class of random processes, the joint density 
function is independent of the choice of the time origin. These 
processes whose statistical properties are time independent are 
called stationary processes.

32



Stationarity: Summary

• Strictly stationary: (SSS: Strict Sense 
Stationary process ) If none of the 
statistics of the random process are 
affected by a shift in the time origin.
Strict-sense stationarity seldom 
holds for random processes, except 
for some Gaussian processes. 
Therefore, weaker forms of 
stationarity are needed. 

Time, t

PDF of X(t)
X(t)

Wide sense stationary (WSS): If the mean (e.g. above) and autocorrelation 
function do not change with a shift in the origin time. 

Cyclostationary: If the mean and autocorrelation function are periodic in time.

There are different notions of stationarity.

33



SSS: Strict Sense Stationary process 

The statistics of all the orders are unchanged by a shift in the time axis 

𝐹𝑋(𝑡1+𝜏), . . ,𝑋(𝑡𝑛+𝜏) 𝑥1, … , 𝑥𝑛 = 𝐹𝑋(𝑡1), . . ,𝑋(𝑡𝑛) 𝑥1, … , 𝑥𝑛 ∀n, ∀t1,...,tn

first-order strict sense stationary process, when  𝐹 𝑥 = 𝑡→∞
𝑙𝑖𝑚𝑃 𝑋𝑡 ≤ 𝑥

• Or from n-th order we have 𝑓𝑋 𝒙; 𝒕 = 𝑓𝑋 𝒙; 𝒕 + 𝑐 for any c. 

• In particular c = – t gives 𝑓𝑋 𝒙; 𝒕 = 𝑓𝑋 𝒙

• i.e., the first-order density of X(t) is independent of t. In that case

𝐸 𝑋(𝑡) = ∞−
∞
𝑥𝑓( 𝑥)dx = μ which is a constant

• Similarly, for a

second-order strict-sense stationary process we have

𝑓𝑋 𝑥1, 𝑥2; 𝑡1, 𝑡2 = 𝑓𝑋 𝑥1, 𝑥2; 𝑡1 + 𝑐, 𝑡2 + 𝑐 for any c.

• For c = – t2 we get 𝑓𝑋 𝑥1, 𝑥2; 𝑡1, 𝑡2 = 𝑓𝑋 𝑥1, 𝑥2; 𝑡1 − 𝑡2

34



SSS: Strict Sense Stationary process 

One implication of stationarity is that the probability of the set of 
sample functions of this process which passes through the windows of 
the Fig.(a) is equal to the probability of the set of sample functions 
which passes through the corresponding time shifted windows of Fig. 
(b). Note, however, that it is not necessary that these two sets consist 
of the same sample functions. The distributions (which are 
probabilities  are equal) . Equality in distribution

Fig.(a) Fig.(b) 
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WSS: Stationarity in wide sense (or weak sense)
Specifying a stochastic process X(t) with its moments is a weaker condition than its distributions

A RP X(t) is WSS if its 1st and 2nd order statistics ( mean and autocorrelation functions) are 
time invariant, i.e.

𝑋𝑡 = constant    (e.g. 𝐸 𝑋 𝑡 = 𝜇 )   and
𝑅𝑡+𝜏,𝑠+𝜏 = 𝑅𝑡,𝑠 ∀τ , (i.e. R(t1,t2)=R(τ)) 
in another word, correlation depends on the difference of t1,t2 

Note: A WSS process has a constant variance
By definition: 
𝜎𝑥
2 = 𝐸 (𝑥 𝑡 − ҧ𝑥)2 = 𝐸 𝑥2 𝑡 − 2 ҧ𝑥𝑥 𝑡 + ҧ𝑥2 = 𝐸 𝑥2 𝑡 − 2 ҧ𝑥𝐸[𝑥 𝑡 } + ҧ𝑥2 = 𝑅𝑋 0 − ҧ𝑥2

Example of WSS: example2:x(t)=Acos(2𝜋t+ ), ~U(-, ): Have shown that this process is WSS,  i.e.

Mean = constant
ACF = function of τ only
What is variance for this example?  Variance of Sinusoid w/ Random Phase is:

𝜎𝑥
2 = 𝑅𝑋 0 − ҧ𝑥2 =

𝐴2

2
− 0 =

𝐴2

2

Strict-sense stationarity → wide-sense stationarity
Reverse is not true
However, for Gaussian RP WSS implies SSS
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Autocorrelation and stationarity

Note: For WSS :
𝑅𝑋 𝜏 = 𝑅𝑋 𝑡1 − 𝑡2, 0 = 𝐸 𝑋 𝑡1 − 𝑡2 𝑋∗ 0

= න
−∞

∞

න
−∞

∞

𝑥1𝑥2𝑓𝑋 0 ,𝑋(𝑡2−𝑡1)( 𝑥1, 𝑥2 )𝑑𝑥1𝑑𝑥2

𝑅𝑋 𝑡1, 𝑡2 = 𝑅𝑋 𝑡1, 𝑡1 + 𝜏 = 𝐸 𝑋 𝑡1 𝑋∗ 𝑡1 + 𝜏 = න
−∞

∞

න
−∞

∞

𝑥1𝑥2𝑝𝑥( 𝑥1, 𝑥2 ; 𝜏)𝑑𝑥1𝑑𝑥2 = 𝑅𝑋 𝜏

Does not depend on  𝒕𝟏if x(t) is stationary
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R()

Time lag, 

1

0

• Illustrating the autocorrelation 
functions of slowly and rapidly 
fluctuating random processes

• The autocorrelation for a random 
process eventually decays to zero 
at large  

• The autocorrelation for a 
sinusoidal process is a cosine 
function which does not decay to 
zero

Autocorrelation

R(τ)=
𝐴2

2 cos(2πτ)

38



Properties of the Autocorrelation Function

• If x(t) is Wide Sense Stationary, then autocorrelation is a real function 
and has the following properties:

 2
)( )0( txER = this is the second moment

)()(  −= RR even symmetry

)()0( RR 
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Process of independent increments

𝑋𝑡2 − 𝑋𝑡1 , . . , 𝑋𝑡𝑛 −𝑋𝑡𝑛− are independent ∀t1 <t2 <···<tn (c.f. disjoint 
intervals)

◼ P(N1=n1, N2=n2) = P(N1=n1)P(N2=n2) if N1 and N2 are disjoint intervals
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Stationary Increments :

◼ A stochastic process X(t) is said to have stationary increments if X(t2+s)-
X(t1+s) and X(t2)-X(t1) have the same distribution for all t1 < t2, s > 0. 

◼ i.e. 𝑋𝑡+𝜏 − 𝑋𝑡 is a stationarity process ∀τ (i.e. does not depend on t)

◼ Examples: see Garcia’s book

t1
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Ergodicity
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Ergodic Processes - averages

For a strictly stationary process X(t) and for any function g(x), we can define 
two types of averages: statistical average , time average 
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Time Average versus Ensemble Average

Example.
◼X(t) is stationary.

◼For any t, X(t) is uniformly distributed over {1, 2, 3, 4, 5, 6}.

◼Then ensemble average is equal to:

5.3
6

1
6

6

1
5

6

1
4

6

1
3

6

1
2

6

1
1 =+++++
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Time Average versus Ensemble Average

• We make a series of observations at time 0, T, 2T, …, 10T to obtain 1, 2, 3, 4, 3, 
2, 5, 6, 4, 1. (They are deterministic!)

• Then, the time average is equal to:

1.3
10

1465234321
=

+++++++++
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Ergodic Processes - averages

For a strictly stationary process X(t) and for any function g(x), we can define 
two types of averages: statistical average , time average 

1. By looking at a given time t0 and different realizations of the process, we 
have a RV X(t0) with density function 𝑓𝑋(𝑡0) 𝑥 , which is independent of t0 

since the process is strictly stationary. 
For this RV, we can find the statistical average (or ensemble average) of any function g(X) as

𝐸 𝑔(𝑋(𝑡0)) = න
−∞

∞

න
−∞

∞

𝑔(𝑥)𝑓𝑋(𝑡0)( 𝑥)𝑑𝑥

This value is, of course, independent of t0.
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Ergodic Processes - averages

2. By looking at an individual realization (e.g realization i ), we have a deterministic function of time 
x(t; ωi). Based on this function, we can find the time average for a function g(x), defined as

< 𝑔(𝑥) >𝑖= lim
𝑇→∞

1

2𝑇
න
−𝑇

𝑇

𝑔(𝑋(𝑡;ω𝑖)𝑑𝑡

◼ < 𝑔(𝑥) >𝑖is, of course, a real number independent of t but, in general, it is dependent on the 
particular realization chosen (ωi or i). Thus, for each ωi we have a corresponding real number 
< 𝑔(𝑥) >𝑖. Hence, < 𝑔(𝑥) >𝑖is the value assumed by a random variable. We denote this 
random variable by < 𝑔(𝑥) >𝑖.

If it happens that for all functions g(x), < 𝑔(𝑥) >𝑖is independent of i and equals 𝐸 𝑔(𝑋(𝑡0)) , then 
the process is called ergodic
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Ergodic Processes

Definition 6.3. A stationary process( strict sense or WSS) X(t) is ergodic if for all functions g(x) and all 𝜔𝑖𝜖Ω

lim
𝑇→∞

1

2𝑇
න
−𝑇

𝑇

𝑔(𝑋 𝑡;ω𝑖 )𝑑𝑡 = 𝐸 𝑔(𝑋(𝑡0))

i.e., if all time averages are equal to the corresponding statistical averages, then the stationary process is ergodic.

A natural consequence of ergodicity is that in measuring various statistical averages (mean and 

autocorrelation, for example), it is sufficient to look at one realization of the process and find the 

corresponding time average, rather than considering a large number of realizations and averaging over them.
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Ergodic Processes

Note1: many types of ergodic process e.g.

1-iid- see garcia

2- WSS

• Mean Ergodic, if 𝑔 𝑥 = 𝑋(𝑡)

• Correlation(covariance) Ergodic, if 𝑔 𝑥 = 𝑅𝑋 𝑇, 𝜏

• Distribution Ergodic (Papoulis ch.12)

Note2: Ergodicity is a very strong property. Unfortunately, in general, there exists no simple test for ergodicity. For the 

important class of Gaussian processes, however, there exists a simple test.

Note3: for Stationary processes ensemble average is constant, while statistical average is a RV
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Exercise

• For any RP we are interested to know whether it is Stationary (in what 
sense) and ergodic

• Q: Characterize Sinusoidal Wave with Random Phase in terms of 
stationarity and ergodicity?

• Q: what is mean-ergodicity?

• Q: what is necessary and sufficient condition for mean ergodicity?

• Q: what is sufficient condition for ergodicity?

• A: see Papoulis Ch. 12

• Note:𝐶𝑋 𝑡1, 𝑡2 = 𝐸[{𝑋𝑡1−𝑋𝑡1} {𝑋𝑡2−𝑋𝑡2}] = 𝑅𝑋 𝑡1, 𝑡2 −𝑚𝑋 𝑡1 𝑚𝑋
∗ 𝑡2
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Ergodic Process

• Experiments or observations on the same process can only be performed 
at different time.

• “Stationarity” only guarantees that the observations made at different time 
come from the same distribution.

• It can be shown, for instance, that a WSS process with finite variance at 
each instant and with a covariance function that approaches 0 for large 
lags is ergodic in the mean.

• Note that a (nonstationary) process with time-varying mean cannot be 
ergodic in the mean.
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Ergodic Process

• Frequently, however, such ergodicity is simply assumed for 
convenience, in the absence of evidence that the assumption
is not reasonable. Under this assumption,  “the mean and 
autocorrelation can be obtained from time-averaging on a single 
ensemble member, through the following equalities: (here we don’t 
require the pdf and joint pdf)

• A random process for which (9.40) and (9.41) are true is referred as 
second-order ergodic.
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Stochastic processes

• Reference 
• Kobayashi, Mark, Turin, Probability, Random Processes, and Statistical 

Analysis, Cambridge University Press 2012.
• Papoulis, Probability,Random Variables, and Stochastic Processes 4th Edition, 

McGraw-Hill,2004 
• S.M. Ross, Stochastic Process, 2nd ed., John Wiley & Sons, Inc., 1996, chapter 

2.

• Leon Garcia, Probability and Random Processes for Electrical Engineering, 
Addison-Wesley,  Third Edition, 2008.

• Bertsekas D.P., Tsitsiklis J.N.- Introduction to Probability 2e. 2008

• Yates, Goodman, Probability and Stochastic Processes: A Friendly Introduction 
for Electrical and Computer Engineers, 3rd ed. 2014, wiley
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PSD of RP- method 1
Wiener-Khintchine Theorem 

• It can be shown that the PSD is also given by the FT of the autocorrelation function 
(ACF), 𝑅𝑋 𝜏 , 

𝐺𝑋 𝜔 = 𝐹 𝑅𝑋 𝜏 = ∞−
∞
𝑅𝑋 𝜏 𝑒−𝑗𝜔𝜏𝑑𝜏 or

𝑆𝑋 𝑓 = 𝐹 𝑅𝑋 𝜏 = න
−∞

∞

𝑅𝑋 𝜏 𝑒−2𝑗𝜋𝑓𝜏𝑑𝜏

where, 𝑅𝑋 𝜏 = 𝐸[𝑥 𝑡 𝑥(𝑡 + 𝜏)]

so it applies to a WSS random process X(t) with autocorrelation function 𝑅𝑋 𝜏

• We may find 𝑅𝑋 𝜏 , by the inverse Fourier transform of 𝑆𝑋 𝑓

𝑅𝑋 𝜏 = 𝐹−1 𝑆𝑋 𝑓 = න
−∞

∞

𝑆𝑋 𝑓 𝑒2𝑗𝜋𝑓𝜏𝑑𝑓

The Wiener-Khintchine result holds for random signals, choosing for x(t) any randomly 
selected realization of the signal
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PSD of RP- method 1

• For real-valued 𝑋 𝑡 , 

𝑅𝑋 𝜏 is an even, real-valued function of 𝜏.

• From the properties of the Fourier transform, we find that

1. 𝑆𝑋 𝑓 is also real-valued and an even function of 𝑓
i.e.   𝑆𝑋 −𝑓 = 𝑆𝑋 𝑓 for all 𝑓

2. 𝑆𝑋 𝑓 ≥ 0
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PSD of RP- method 1

• We use PSD to find power of the random signal, to do so, choose 𝜏=0

e.g. total power is:

𝑃𝑋= E[(𝑋2 𝑡 )]=
1

2𝜋
∞−
∞
𝐺𝑋 𝜔 𝑑𝜔 = 𝑅𝑋 0 = ∞−

∞
𝑆𝑋 𝑓 𝑑𝑓

Proof: E[(𝑋2 𝑡 )]= ȁE[𝑋 𝑡 𝑥(𝑡 − 𝜏)] 𝜏=0 = ȁ𝑅𝑋 𝜏 𝜏=0 = 𝑅𝑋 0 𝑅𝑋 𝜏

= 𝐹−1 𝑆𝑋 𝑓 = ∞−
∞
𝑆𝑋 𝑓 𝑒2𝑗𝜋𝑓.0𝑑𝑓= −∞

∞
𝑆𝑋 𝑓 𝑑𝑓

• we may find the expected power of 𝑋 𝑡 in a specific frequency range 
by integrating the PSD over that specific range 
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PSD, random signals-method 2

we use statistical average of the random signal (compare this with deterministic signal 

that we used x(t) to compute PSD i.e. 𝐺𝑋(𝜔) = lim
𝑇→∞

𝑋𝑇(𝜔)
2

𝑇
)

𝐺𝑋(𝜔) = lim
𝑇→∞

𝐸[ 𝑋𝑇(𝜔)
2]

𝑇

Where 𝑋𝑇 𝜔 = 𝑇−
𝑇
𝑋(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡 is the Fourier transform of X(t) limited to [−T, T]

Why we call 𝐺𝑋 𝜔 PSD: For a random signal power is obtained as:

𝑃𝑋 ≝ 𝐸[ lim
𝑇→∞

1

𝑇
න
−
𝑇
2

𝑇
2
𝑥 𝑡 2𝑑𝑡]

Then it holds:

𝑃𝑋 =
1

2𝜋
න
−∞

∞

𝐺𝑋 𝜔 𝑑𝜔
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PSD, random signals-method 2

Proof. First of all, we recall that PX is the expected average power of X(t). Let

𝑋𝑇 𝑡 = ቐ𝑋 𝑡 −
𝑇

2
≤ 𝑡 ≤

𝑇

2
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Then we can show that integrating over −∞ to ∞ is equivalent to

න
−∞

∞

𝑋𝑇(𝑡)
2 = න

−𝑇

𝑇

𝑋(𝑡) 2

By Parseval’s theorem, energy preserves in both time and frequency domain:

න
−∞

∞

𝑋𝑇(𝑡)
2𝑑𝑡 =

1

2𝜋
න
−∞

∞

𝑋𝑇(𝜔)
2𝑑𝜔

Therefore, we can show that PX satisfies

𝑃𝑋 ≝ 𝐸[ lim
𝑇→∞

1

𝑇
න
−
𝑇
2

𝑇
2
𝑥 𝑡 2𝑑𝑡]

= 𝐸 lim
𝑇→∞

1

2𝜋

1

𝑇
න
−∞

∞

𝑋𝑇 𝜔 2𝑑𝜔

=
1

2𝜋
න
−∞

∞

lim
𝑇→∞

1

𝑇
𝐸[ 𝑋𝑇(𝜔)

2]𝑑𝜔
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PSD, random signals

The Wiener-Khintchine result holds for random signals, choosing for x(t) any 
randomly selected realization of the signal

Note: Only applies for ergodic signals where the time averages are the same as 
the corresponding ensemble averages
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Examples

Example1. Let RX(τ) = e−2α|τ| , then

SX(ω) = F {RX(τ)} =
4𝛼

4𝛼2+𝜔2

Example2. Let X(t) = Acos(ω0t + Θ), Θ ∼ Uniform[0, 2π]. Then we can show that

𝑅𝑋 𝜏 =
𝐴2

2
cos(ω0τ)=

𝐴2

2

𝑒jω0τ + 𝑒−jω0τ

2

Then, by taking Fourier transform of both sides, we have

SX(ω) =
𝐴2

2
2𝜋𝛿 𝜔−𝜔0 +2𝜋𝛿(𝜔+𝜔0)

2

=
𝜋𝐴2

2
[𝛿 𝜔 − 𝜔0 + 2𝜋𝛿(𝜔 + 𝜔0)]

Example3. Given that SX(ω) =
𝑁0

2
𝑟𝑒𝑐𝑡

𝜔

2𝑊
, then

RX(τ) =
𝑁0

2
𝑊

π
𝑠𝑖𝑛𝑐 𝑊𝜏
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ERGODICITY QULATITAIVE DESC.

• Qualitative (but not precise) description: a random process
is said to be ergodic if its statistical properties (such as its
mean and autocorrelation function) can be deduced from a
single, sufficiently long sample (realization) of the process.
One can discuss the ergodicity of various properties of a
random process.
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Ergodicity

Definition. A stationary process X(t) is ergodic in the mean if

1. 𝑃{ lim
𝑇→∞

< 𝑋 𝑡 >𝑇=𝑚𝑋} = 1 and

2. lim
𝑇→∞

𝑉𝑎𝑟[< 𝑋 𝑡 >𝑇] = 0

where

< 𝑋(𝑡) >𝑖= lim
𝑇→∞

1

2𝑇
න
−𝑇

𝑇

𝑋(𝑡;ω𝑖)𝑑𝑡
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Ergodicity

Theorem: Let X(t) be a WSS process with 𝑚𝑋 𝑡 = 𝑚 then

lim
𝑇→∞

< 𝑋 𝑡 >𝑇=𝑚

in the mean square sense, if and only if

lim
𝑇→∞

1

2𝑇
න
−𝑇

𝑇

1 −
𝑢

2𝑇
𝐶𝑋 𝑢 𝑑𝑢 = 0

where, 𝐶𝑋 𝜏 = 𝐸[𝑋𝑡𝑋𝑡+𝜏]

Proof: Garcia’s book page 541

In keeping with engineering usage, we say that a WSS process is mean 
ergodic if it satisfies the conditions of the above theorem.
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Ergodicity

Definition. A stationary process X(t) is ergodic in the autocorrelation 
function if

1. 𝑃{ lim
𝑇→∞

𝑅𝑋(𝜏; 𝑇) = 𝑅𝑋(𝜏)} = 1

2. lim
𝑇→∞

𝑉𝑎𝑟[𝑅𝑋(𝜏; 𝑇)] = 0

where

𝑅𝑋 𝜏; 𝑇 =< 𝑋 𝑡 𝑋 𝑡 + 𝜏 >𝑇=
1

2𝑇
න
−𝑇

𝑇

𝑋 𝑡 𝑋∗(𝑡 + 𝜏)𝑑𝑡
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Ergodicity

Theorem: Let X(t) be a WSS process with 𝑅𝑋 𝑡1, 𝑡2 = 𝑅𝑋 𝑡2 − 𝑡1 = 𝑅𝑋(𝜏)
then

lim
𝑇→∞

< 𝑋 𝑡 𝑋 𝑡 + 𝜏 >𝑇=𝑅𝑋(𝜏)

in the mean square sense, if and only if

lim
𝑇→∞

1

2𝑇
න
−𝑇

𝑇

1 −
𝑢

2𝑇
𝐶𝑋 𝑢 𝑑𝑢 = 0
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Ergodicity-sufficient condition

Theorem: a WSS random process is mean ergodic if

න
−∞

∞

ȁ𝐶 𝑢 ȁ𝑑𝑢 < ∞

a discrete-time WSS random process is mean ergodic if



𝑘=−∞

∞

ȁ𝐶 𝑘 ȁ < ∞

Proof:See papapoulis
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Ergodicity

Example 9.48- Garcia 3rd ed. Page 542

Q: Is the random telegraph process mean ergodic?

A:The covariance function for the random telegraph process is 𝐶𝑋 𝜏 = 𝑒−2𝛼ȁ𝜏ȁ so the 

variance of < 𝑋 𝑡 >𝑇of is

𝑉𝑎𝑟[< 𝑋 𝑡 >𝑇] =
2

2𝑇
න
0

2𝑇

1 −
𝑢

2𝑇
𝐶𝑋 𝑢 𝑑𝑢 =

2

2𝑇
න
0

2𝑇

1 −
𝑢

2𝑇
𝑒−2𝛼𝑢𝑑𝑢

<
1

𝑇
න
0

2𝑇

𝑒−2𝛼𝑢𝑑𝑢 =
1 − 𝑒−4𝛼𝑇

2𝛼𝑇

The bound approaches zero as T → ∞ so 𝑉𝑎𝑟[< 𝑋 𝑡 >𝑇] → 0.

Therefore the process is mean ergodic.
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Ergodicity- Discrete time

the time-average estimate for the mean and the autocorrelation functions of  discrete time 𝑋𝑛 are given by

< 𝑋𝑛 >𝑇=
1

2𝑇 + 1


𝑛=−𝑇

𝑇

𝑋𝑛

< 𝑋𝑛+𝑘𝑋𝑛 >𝑇=
1

2𝑇 + 1


𝑛=−𝑇

𝑇

𝑋𝑛+𝑘𝑋𝑛

If 𝑋𝑛is a WSS random process, then 𝐸[< 𝑋𝑛 >𝑇] and so < 𝑋𝑛 >𝑇 is an unbiased estimate for m. It is easy to 
show that the variance of < 𝑋𝑛 >𝑇is

𝑉𝑎𝑟[< 𝑋𝑛 >𝑇] =
1

2𝑇 + 1


𝑘=−2𝑇

2𝑇

1 −
𝑘

2𝑇 + 1
𝐶𝑋 𝑘

Therefore, < 𝑋𝑛 >𝑇approaches m in the mean square sense and is mean ergodic if the expression in the 
above Eq. approaches zero with increasing T.
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Ergodicity- Discrete time

Example 9.49 Ergodicity and Exponential Correlation p. 543 Garcia 3rd.ed.
Let 𝑋𝑛be a wide-sense stationary discrete-time process with mean m and covariance 
function 𝐶𝑋 𝑘 = 𝜎2𝜌−ȁ𝑘ȁ for 𝜌 < 𝑘 and 𝑘 + 0,±1,±2,…Show that 𝑋𝑛 is mean ergodic.
The variance of the sample mean i.e. < 𝑋𝑛 >𝑇 is

𝑉𝑎𝑟[< 𝑋𝑛 >𝑇] =
1

2𝑇 + 1


𝑘=−2𝑇

2𝑇

1 −
𝑘

2𝑇 + 1
𝜎2𝜌−ȁ𝑘ȁ

<
1

2𝑇+1
σ𝑘=0
∞ 𝜎2𝜌−𝑘 =

2𝜎2

2𝑇+1

1

1−𝜌

Therefore, < 𝑋𝑛 >𝑇approaches m in the mean square sense and is mean ergodic if the 
expression in the above Eq. approaches zero with increasing T.
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Ergodicity- Discrete time

Example 9.50 Ergodicity of Self-Similar Process and Long-Range Dependence
Let 𝑋𝑛be a WSS discrete-time process with mean m and covariance function

𝐶𝑋 𝑘 =
𝜎2

2
{ 𝑘 + 1 2𝐻 − 2 𝑘 2𝐻 + ȁ𝑘 − 1ȁ2𝐻}for 1/2 < 𝐻 < 1 and 𝑘 + 0,±1,±2,…

𝑋𝑛 is said to be second-order self-similar.  investigate the ergodicity of 𝑋𝑛. We rewrite the variance of the 
sample mean  (i.e.< 𝑋𝑛 >𝑇=

1

2𝑇+1
σ𝑛=−𝑇
𝑇 𝑋𝑛) as follows:

𝑉𝑎𝑟[< 𝑋𝑛 >𝑇] =
1

(2𝑇 + 1)2


𝑘=−2𝑇

2𝑇

2𝑇 + 1 − 𝑘 𝐶𝑋 𝑘

=
1

(2𝑇 + 1)2
{ 2𝑇 + 1 𝐶𝑋 0 + 2 2𝑇𝐶𝑋 1 +⋯+ 2𝐶𝑋 2𝑇 }

It is easy to show (See Problem 9.105) that the sum inside the braces is𝜎2(2𝑇 + 1)2𝐻Therefore
the variance becomes:

𝑉𝑎𝑟[< 𝑋𝑛 >𝑇] =
1

(2𝑇 + 1)2
𝜎2(2𝑇 + 1)2𝐻= 𝜎2(2𝑇 + 1)2𝐻−2

9.105. In Example 9.50 show that 𝑉𝑎𝑟[< 𝑋𝑛 >𝑇] = 𝜎2(2𝑇 + 1)2𝐻−2
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Problem:9.105. In Example 9.50 show that 𝑉𝑎𝑟[< 𝑋𝑛 >𝑇] = 𝜎2(2𝑇 + 1)2𝐻−2

2𝑇 + 1 × 𝐶𝑋 0 = 2𝑇 + 1
𝜎2

2
{12𝐻 − 2 0 2𝐻 + 12𝐻}

2 × 2𝑇 × 𝐶𝑋 1 = 2 2𝑇
𝜎2

2
{22𝐻 − 2 × 12𝐻 + 02𝐻}

2 × (2𝑇 − 1) × 𝐶𝑋 2 = 2 2𝑇 − 1
𝜎2

2
{32𝐻 − 2 × 22𝐻 + 12𝐻}

…

2 × 2 × 𝐶𝑋 2𝑇 − 1 = 2 × 2 ×
𝜎2

2
{(2𝑇)2𝐻−2 × (2𝑇 − 1)2𝐻 + (2𝑇 − 2)2𝐻}

2 × 1 × 𝐶𝑋 2𝑇 = 2 × 1 ×
𝜎2

2
{(2𝑇 + 1)2𝐻−2 × (2𝑇)2𝐻 + (2𝑇 − 1)2𝐻}

𝑉𝑎𝑟[< 𝑋𝑛 >𝑇] =
1

(2𝑇 + 1)2
(2𝑇 + 1)2𝐻× 2 × 1 ×

𝜎2

2
= 𝜎2(2𝑇 + 1)2𝐻−2
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Ergodicity- Discrete time

Example 9.50 Ergodicity of Self-Similar Process and Long-Range Dependence
The value of H, which is called the Hurst parameter, affects the convergence behavior of the sample mean. 

Note that if H=1/2, the covariance function 𝐶𝑋 𝑘 =
1

2
𝜎2𝛿𝑘 becomes which corresponds to an iid sequence. 

In this case, the variance becomes 
𝜎2

(2𝑇+1)2
which is the convergence rate of the sample mean for iid samples. 

However, for H>1/2 the variance becomes

𝑉𝑎𝑟[< 𝑋𝑛 >𝑇] =
𝜎2

(2𝑇 + 1)2
(2𝑇 + 1)2𝐻−1

so the convergence of the sample mean is slower by a factor of (2𝑇 + 1)2𝐻−1 than for iid samples.

The slower convergence of the sample mean when H>1/2 results from the long-range dependence of 𝑋𝑛. It 
can be shown that for large k, the covariance function is approximately given by:

𝐶𝑋 𝑘 = 𝜎2𝐻(2𝐻 − 1)𝑘2𝐻−2

For ½<H<1 , 𝐶𝑋 𝑘 decays as 
1

𝑘𝑛
where 0 < 𝛼 < 1 ,which is a very slow decay rate. Thus

the dependence between values of 𝑋𝑛 decreases slowly and the process is said to have a long
memory or long-range dependence.
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