Classification of Random Processes

1/24

There are several different ways to Classify Random Processes:

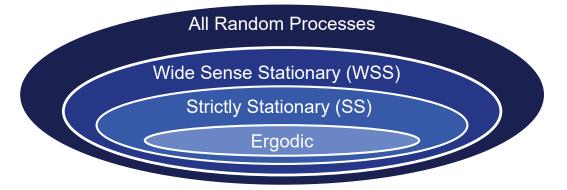
1) Type of Time Index

- * Continuous–Time: x(t) $t \in (-\infty, \infty)$
- * <u>Discrete-Time</u>: x[k] k∈ integers

2) Type of Values

- * Continuous-Value: x(t) takes values over an interval, possibly $(-\infty,\infty)$
- * <u>Discrete-Value</u>: x(t) takes values from a discrete set (e.g. the integers)

3) Type of Time Dependence of PDFs



 $\mathsf{Ergodic} \subset \mathsf{SS} \subset \mathsf{WSS} \subset \mathsf{All}\;\mathsf{RPs}$

"Nonstationary RP" = One that is <u>not</u> WSS

When discussing a RP's PDF above we have allowed for the most general time dependence. However, in practice many RP's have Restricted Time-Dependence (e.g., WSS).

3/24

(Strictly) Stationary Processes

Rough Definition: A RP whose entire statistical characterization doesn't change with time

To Get A More Precise Definition....

First consider the n^{th} order PDF and re-write it as :

$$p(x_1,x_2,...x_n;t_1,t_2,...,t_n)$$

$$= p(x_1,x_2,...x_n;t_1,(t_1+\Delta_2),...,(t_1+\Delta_n))$$
Depends on t_1 , Δ_2 ,... Δ_n
Absolute Time Relative Times

(Strictly) Stationary Processes

Precise Definition

A Process is (strictly) stationary if, for all orders of n,

$$p(x_1,x_2,...,x_n; t_1, t_1 + \Delta_2,...,t_1 + \Delta_n)$$

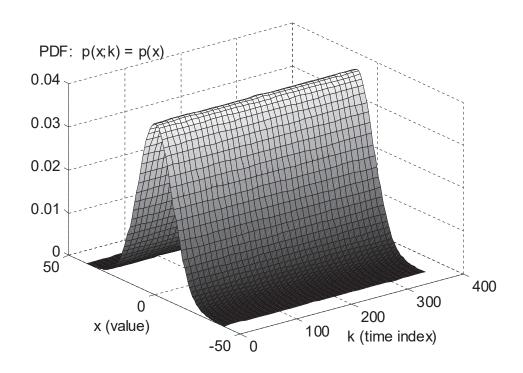
does not depend on t_1 but only on $\Delta_2, ... \Delta_n$ i.e. it depends *only* on relative time between points

NOTE 1: Since the 1st Order PDF $p(x_1;t_1)$ does not depend on any relative time, <u>a SS process</u> must have a time-independent 1st Order PDF:

$$p(\mathbf{x}_1;\mathbf{t}_1) = p(\mathbf{x}_1)$$

5/24

Time-Invariant 1st Order PDF



Stationary Processes

Thus a Stationary process must have:

Constant Mean: $\int_{-\infty}^{\infty} x \cdot p(x;t) dx = m_x = \text{constant}$ = p(x) for stationaryprocess

Constant Variance:

$$\int_{-\infty}^{\infty} (x - m_x(t)) \cdot p(x;t) dx$$

$$= \int_{-\infty}^{\infty} (x - m_x) \cdot p(x) dx = \sigma_x^2 = \text{constant}$$

<<These are "necessary" but not "sufficient" conditions for SS>>

7/24

Stationary Process

Note 2: A Stationary process's 2^{nd} Order PDF depends only on the difference $t = t_2 - t_1$: $P(x_1, x_2; \tau)$

Thus a stationary process must have :

Autocorrelation Function that depends only on $\tau = t_2 - t_1$

$$R_{x}(t_{1},t_{2}) = R_{x}(t_{1}, t_{1} + \tau)$$

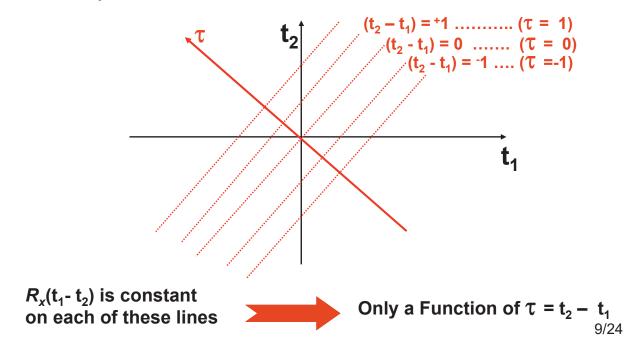
$$= E\{x(t_{1}) x(t_{1} + \tau)\}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{2} \cdot x_{1} \cdot p_{x}(x_{1}, x_{2}; \tau) dx_{1} dx_{2}$$

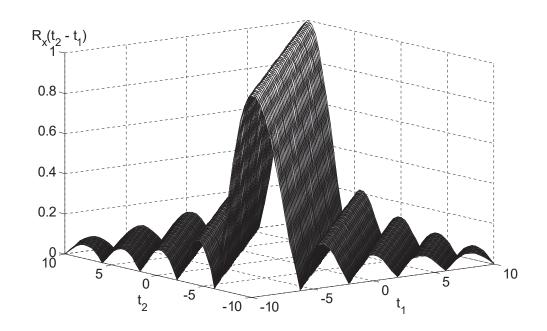
$$= R_{x}(\tau)$$

Stationary Process

Note: As a 2-D function, $R_x(t_1 - t_2)$ for a stationary process looks like this:



An ACF That Depends Only On $t_2 - t_1$



Stationary Process

Now, A <u>stationary</u> process <u>must have these 3</u> <u>properties</u> BUT ... <u>must also have</u> the similar properties for all the <u>higher Order PDF's!</u>

That's a lot to ask of a process in practice!

In Practice we "lower our standards" and we are mostly interested in so-called "wide-sense stationary" (WSS) processes.

11/24

Wide-Sense Stationary

A Process X(t) is said to be **wide-sense stationary** (WSS) if both of the following conditions are satisfied:

2)
$$R_X(t_1, t_2) = R_X(\tau)$$
 Where $\tau = t_1 - t_2$

ACF depends only on a time Difference

Wide-Sense Stationary

NOTE: A WSS Process has a constant Variance

Proof By Definition :

$$\sigma_{x}^{2} = E\{(x(t) - \overline{x})^{2}\}\$$

$$= E\{x^{2}(t) - 2\overline{x}x(t) + \overline{x}^{2}\}\$$

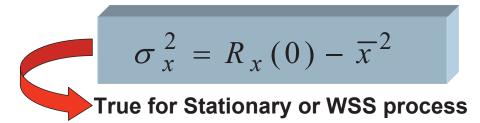
$$= E\{x^{2}(t)\} - 2\overline{x}E\{x(t)\} + \overline{x}^{2}$$

$$\xrightarrow{R_{x}(0)} \overline{x}$$

13/24

Wide-sense Stationary

Thus we have proved:



Passing Comment:

Alot of the analysis DSP engineers do centers around <u>Specifying an Appropriate Model</u> for a random signal expected to be encountered and <u>Determining if the Model is WSS</u>.

Example of RP Model

$$X(t) = A COS (\omega_C t + \theta)$$
Not Random Variable

Good model for a received sinusoid since we have no idea what Phase the transmitter used

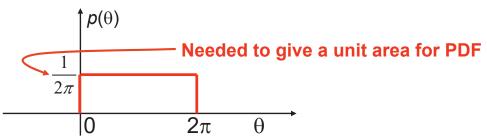
...thus phase could be anything \Rightarrow each value is equally likely

So... Model θ as a RV uniformly distributed between 0 & 2π

15/24

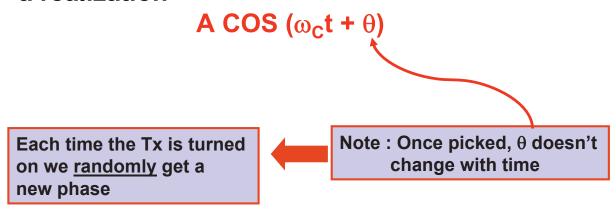
Example of RP Model (cont.)

PDF of
$$\theta$$
 : $p(\theta) = \begin{cases} \frac{1}{2\pi}, & 0 \le \theta \le 2\pi \\ 0, & \text{otherwise} \end{cases}$



Q: What does this Model Say?

A: Transmitter (Tx) randomly "picks" a single phase value from 0 to 2π and generates a realization



17/24

Example of RP Model (cont.)

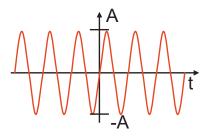
Q: Which of our two "view points" is easier to think of for this example?

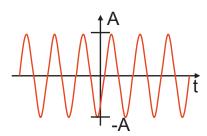
- 1. Sequence of RVs???
- 2. Collection of Waveforms & Pick One???

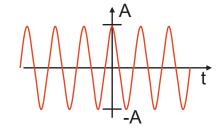
A : Clearly it is easier to view this random process as a collection of waveforms from which you randomly pick one

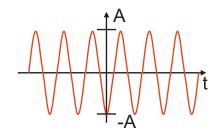
Remember!!! - Both Views are Still Correct

Here are 4 realizations (sample functions) of the ensemble of this process









Each one has a different Phase

Which signal you get is randomly chosen according to the PDF of Phase

19/24

Example of RP Model (cont.)

Looking at any <u>one</u> sample function doesn't give the appearance of being a random process!

BUT IT *IS* **RANDOM!** You don't know ahead of time which you were going to get.

In <u>this case</u>, randomness is best viewed as "not knowing which of the infinite possible sample functions you will get"

So... now we <u>have a model</u> for a practical signal scenario. Now What???

Do analysis to characterize the model !!!!

<u>Task</u>: Find the **mean** and the **ACF** of this process & Ask: **Is It WSS?**

Mean = E{
$$x(t)$$
} = E{A cos ($\omega_c t + \theta$)}
= A E{ cos($\omega_c t + \theta$)}
Exp. Val. of Function of a RV
If Z is a RV w/ PDF P(z)
then W = f(Z) is a new RV w/

$$E\{W\} = E\{f(Z)\} = \int f(z)P_z(z)dz$$

$$= \frac{A}{2\pi} \int_0^{2\pi} \cos(\omega_c t + \theta)d\theta$$
Integrating over one full cycle for each fixed t value:
 $\Rightarrow = 0$

Example of RP Model (cont.)

21/24

22/24

Auto-Correlation Function (ACF)

Until you know that the process is at least WSS you must start with the general form of $R_X(t_1,t_2)$. Then work to see if you <u>can</u> reduce it to $R_X(\tau)$ Form

$$R_{x}(t_{1},t_{2}) = E\{x(t_{1}) \ x(t_{2})\}$$

$$= A^{2} E\{\cos(\omega_{c}t_{1}+\theta)\cos(\omega_{c}t_{2}+\theta)\}$$

$$= \frac{A^{2}}{2} \left[E\{\cos(\omega_{c}(t_{2}-t_{1}))\} + E\{\cos(\omega_{c}(t_{2}+t_{1})+2\theta)\}\right]$$

$$= \cos(\omega_{c}(t_{2}-t_{1}))$$
Nothing random inside E{.}!

$$\mathbb{R}_{x}(t_{1},t_{2}) = \frac{A^{2}}{2} \cos \left[\omega_{c}(t_{2}-t_{1})\right]$$
 Depends only on $\tau = t_{2}-t_{1}$

$$R_x(\tau) = \frac{A^2}{2} \cos \left[\omega_c \tau\right]$$

Have shown that this process is WSS, i.e.

Mean = constant ACF = function of τ only

23/24

Example of RP Model (cont.)

Now... What is variance for this example?

Variance of Sinusoid w/ Random Phase is:

$$\sigma_x^2 = R_x(0) - \overline{x}^2 = \frac{A^2}{2} - 0$$

$$=\frac{A^2}{2}$$

Classic Result
Worth Remembering!!!