
Simulation
University of Tehran

Prepared by: ahmad Khonsari

Excerpt from : Finland course

Announcement

• Aim of the lecture

– To present simulation as one of the tools used in teletraffic theory

– To give a brief overview of the different issues in simulation

• The advanced studies module on Teletraffic theory has also a specialized course on simulation

– S-38.3148 Simulation of data networks

– Mandatory course in the Teletraffic theory advanced studies module

– Pre-requisite info: S-38.1145 and programming skills (C/C++)

– Lectured only every other year (take this into consideration when planning your studies!)

– Lectured next time in fall 2008

Contents

• Introduction

• Generation of traffic process realizations

• Generation of random variable realizations

• Collection of data

• Statistical analysis

What is simulation?

• Simulation is (at least from the teletraffic point of view) a statistical method to estimate the
performance
(or some other important characteristic)
of the system under consideration.

• It typically consists of the following four phases:

– Modelling of the system (real or imaginary) as a dynamic stochastic process

– Generation of the realizations of this stochastic process (“observations”)
• Such realizations are called simulation runs

– Collection of data (“measurements”)

– Statistical analysis of the gathered data, and drawing conclusions

Alternative to what?

• In previous lectures, we have looked at an alternative way to determine the performance:
mathematical analysis

• We considered the following two phases:

– Modelling of the system as a stochastic process.
(In this course, we have restricted ourselves to birth-death processes.)

– Solving of the model by means of mathematical analysis

• The modelling phase is common to both of them

• However, the accuracy (faithfulness) of the model that these methods allow can be very different

– unlike simulation, mathematical analysis typically requires (heavily) restrictive assumptions to
be made

Performance analysis of a teletraffic system

Analysis vs. simulation (1)

• Pros of analysis

– Results produced rapidly (after the analysis is made)

– Exact (accurate) results (for the model)

– Gives insight

– Optimization possible (but typically hard)

• Cons of analysis

– Requires restrictive assumptions
⇒ the resulting model is typically too simple

(e.g. only stationary behavior)
⇒ performance analysis of complicated systems impossible

– Even under these assumptions, the analysis itself may be (extremely) hard

Analysis vs. simulation (2)

• Pros of simulation

– No restrictive assumptions needed (in principle)

⇒ performance analysis of complicated systems possible

– Modelling straightforward

• Cons of simulation

– Production of results time-consuming

(simulation programs being typically processor intensive)

– Results inaccurate (however, they can be made as accurate as required by increasing the
number of simulation runs, but this takes even more time)

– Does not necessarily offer a general insight

– Optimization possible only between very few alternatives (parameter combinations or
controls)

Steps in simulating a stochastic process

• Modelling of the system as a stochastic process

– This has already been discussed in this course.

– In the sequel, we will take the model (that is: the stochastic process) for granted.

– In addition, we will restrict ourselves to simple teletraffic models.

• Generation of the realizations of this stochastic process

– Generation of random numbers

– Construction of the realization of the process from event to event (discrete event simulation)

– Often this step is understood as THE simulation, however this is not generally the case

• Collection of data

– Transient phase vs. steady state (stationarity, equilibrium)

• Statistical analysis and conclusions

– Point estimators

– Confidence intervals

Implementation

• Simulation is typically implemented as a computer program

• Simulation program generally comprises the following phases (excluding modelling and
conclusions)

– Generation of the realizations of the stochastic process

– Collection of data

– Statistical analysis of the gathered data

• Simulation program can be implemented by
– a general-purpose programming language • e.g. C or C++

• most flexible, but tedious and prone to programming errors

– utilizing simulation-specific program libraries

• e.g. CNCL
– utilizing simulation-specific software

• e.g. OPNET, BONeS, NS (in part based on p-libraries)

• most rapid and reliable (depending on the s/w), but rigid

Other simulation types

What we have described above, is a discrete event simulation
– the simulation is discrete (event-based), dynamic (evolving in time) and stochastic (including random
components)

– i.e. how to simulate the time evolvement of the mathematical model of the system under
consideration, when the aim is to gather information on the system behavior

– We consider only this type of simulation in this lecture

• Other types:

– continuous simulation: state and parameter spaces of the process are continuous;
description of the system typically by differential equations, e.g. simulation of the trajectory of
an aircraft

– static simulation: time plays no role as there is no process that produces the events, e.g.
numerical integration of a multi-dimensional integral by Monte Carlo method

– deterministic simulation: no random components, e.g. the first example above

Contents

• Introduction

• Generation of traffic process realizations

• Generation of random variable realizations

• Collection of data

• Statistical analysis

Generation of traffic process realizations

• Assume that we have modelled as a stochastic process the evolution of the system

• Next step is to generate realizations of this process.

– For this, we have to:
• Generate a realization (value) for all the random variables affecting the evolution of the process
(taking properly into account all the (statistical) dependencies between these variables)

• Construct a realization of the process (using the generated values)

– These two parts are overlapping, they are not done separately

– Realizations for random variables are generated by utilizing (pseudo) random number
generators

– The realization of the process is constructed from event to event (discrete event simulation)

Discrete event simulation (1)

• Idea: simulation evolves from event to event

– If nothing happens during an interval, we can just skip it!

• Basic events modify (somehow) the state of the system
– e.g. arrivals and departures of customers in a simple teletraffic model

• Extra events related to the data collection
– including the event for stopping the simulation run or collecting data

• Event identification:

– occurrence time (when event is handled) and

– event type (what and how event is handled)

Discrete event simulation (2)

• Events are organized as an event list
– Events in this list are sorted in ascending order by the occurrence time

• first: the event occurring next

– Events are handled one-by-one (in this order) while, at the same time, generating new
events to occur later

– When the event has been processed, it is removed from the list

• Simulation clock tells the occurrence time of the next event

– progressing by jumps

• System state tells the current state of the system

Discrete event simulation (3)

• General algorithm for a single simulation run:

1 Initialization
simulation clock = 0

system state = given initial value

for each event type, generate next event (whenever possible)

construct the event list from these events

2 Event handling

simulation clock = occurrence time of the next event

handle the event including
– generation of new events and their addition to the event list

– updating of the system state

• delete the event from the event list

3 Stopping test
• if positive, then stop the simulation run; otherwise return to 2

Example (1)

• Task: Simulate the M/M/1 queue (more precisely: the evolution of the queue length process) from
time 0 to time T assuming that the queue is empty at time 0 and omitting any data collection

– System state (at time t) = queue length Xt

• initial value: X0 = 0

– Basic events:

• customer arrivals

• customer departures

– Extra event:

• stopping of the simulation run at time T

• Note: No collection of data in this example

Example (2)

• Initialization:

– initialize the system state: 𝑋0 = 0

Example (2)

– generate the time till the first arrival from the Exp(λ) distribution • Handling of an arrival event
(occurring at some time t):

– update the system state: 𝑋𝑡 = 𝑋𝑡 + 1

– if 𝑋𝑡 = 1, then generate the time (𝑡 + 𝑆) till the next departure, where S is

from the 𝐸𝑥𝑝(𝜇) distribution
– generate the time (𝑡 + 𝐼) till the next arrival, where I is from the 𝐸𝑥𝑝(𝜆)

distribution

• Handling of a departure event (occuring at some time t):

– update the system state: 𝑋𝑡 = 𝑋𝑡 − 1

– if 𝑋𝑡 > 0, then generate the time (𝑡 + 𝑆) till the next departure, where S is

from the 𝐸𝑥𝑝(𝜇) distribution • Stopping test: 𝑡 > 𝑇

Example (3)

Contents

• Introduction

• Generation of traffic process realizations

• Generation of random variable realizations

• Collection of data

• Statistical analysis

Generation of random variable realizations

• Based on (pseudo) random number generators

• First step:

– generation of independent uniformly distributed random variables between 0 and 1 (i.e. from
𝑈(0,1) distribution) by using random number generators

• Step from the U(0,1) distribution to the desired distribution:

– rescaling (⇒ 𝑈(𝑎, 𝑏))

– discretization (⇒ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝), 𝐵𝑖𝑛(𝑛, 𝑝), 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑎), 𝐺𝑒𝑜𝑚(𝑝))

– inverse transform (⇒ 𝐸𝑥𝑝(𝜆))

– other transforms (⇒ 𝑁(0,1) ⇒ 𝑁(𝜇, 𝜎2))

– acceptance-rejection method (for any continuous random variable defined in a finite interval
whose density function is bounded)

• two independent 𝑈(0,1) distributed random variables needed

Random number generator

• Random number generator is an algorithm generating (pseudo) random integers Zi in some
interval 0,1, … ,𝑚 − 1

– The sequence generated is always periodic (goal: this period should be as long as possible)

– Strictly speaking, the numbers generated are not random at all, but totally predictable (thus:
pseudo)

– In practice, however, if the generator is well designed, the numbers “appear” to be IID with
uniform distribution inside the set {0,1, … ,𝑚 − 1}

• Validation of a random number generator can be based on empirical (statistical) and theoretical
tests:

– uniformity of the generated empirical distribution

– independence of the generated random numbers (no correlation)

Random number generator types

• Linear congruential generator

– the simplest one

– next random number is based on just the current one: 𝑍𝑖 + 1 =
𝑓(𝑍𝑖) ⇒ period at most m

• Multiplicative congruential generator

– even simpler

– a special case of the first type

• Others:

– Additive congruential generators, shuffling, etc.

Linear congruential generator (LCG)

• Linear congruential generator (LCG) uses the following algorithm to generate random numbers
belonging to {0,1,..., m−1}:

𝑍𝑖 + 1 =
𝑎𝑍𝑖 + 𝑐 𝑚𝑜𝑑 𝑚

– Here a, c and m are fixed non-negative integers (𝑎 < 𝑚, 𝑐 < 𝑚)

– In addition, the starting value (seed) 𝑍0 < 𝑚 should be specified

• Remarks:

– Parameters a, c and m should be chosen with care, otherwise the result can be very poor

– By a right choice of parameters,
it is possible to achieve the full period m

• e.g.𝑚 = 2𝑏, 𝑐 𝑜𝑑𝑑, 𝑎 = 4𝑘 + 1(𝑏 𝑜𝑓𝑡𝑒𝑛 48)

Multiplicative congruential generator (MCG)

• Multiplicative congruential generator (MCG) uses the following algorithm to generate random
numbers belonging to {0,1,..., m−1}:

𝑍𝑖 + 1 = (
𝑎𝑍𝑖)𝑚𝑜𝑑𝑚

– Here a and m are fixed non-negative integers (a < m)

– In addition, the starting value (seed) Z0 < m should be specified

• Remarks:

– MCG is clearly a special case of LCG: c = 0

– Parameters a and m should (still) be chosen with care

– In this case, it is not possible to achieve the full period m

• e.g. if 𝑚 = 2𝑏, then the maximum period is 2𝑏−2

– However, for m prime, period m−1 is possible (by a proper choice of a)

PMMLCG = prime modulus multiplicative LCG

e.g. m = 231−1 and a = 16,807 (or 630,360,016)

U(0,1) distribution

• Let Z denote a (pseudo) random number belonging to {0,1, … ,𝑚 − 1}

• Then (approximately)

U =
𝑍

𝑚
≈ 𝑈(0,1)

U(a,b) distribution

• Let 𝑈 ∼ 𝑈(0,1)

• Then

𝑋 = 𝑎 + (𝑏 − 𝑎)𝑈 ∼ 𝑈(𝑎, 𝑏)

• This is called the rescaling method

Discretization method

• Let 𝑈 ∼ 𝑈(0,1)

• Assume that Y is a discrete random variable

– with value set 𝑆 = {0,1, … , 𝑛} 𝑜𝑟 𝑆 = {0,1,2, … }

• Denote: 𝐹(𝑥) = 𝑃{𝑌 ≤ 𝑥}, then

𝑋 = min{𝑥 ∈ 𝑆|𝐹(𝑥) ≥ 𝑈} ∼ 𝑌

• This is called the discretization method

– a special case of the inverse transform method

• Example: Bernoulli(p) distribution

X = ቊ
0, 𝑖𝑓 𝑈 ≤ 1 − 𝑝
1, 𝑖𝑓 𝑈 > 1 − 𝑝

~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝)

Inverse transform method

• Let 𝑈 ∼ 𝑈(0,1)

• Assume that Y is a continuous random variable

• Assume further that 𝐹(𝑥) = 𝑃{𝑌 ≤ 𝑥} is strictly increasing

• Let F−1(y) denote the inverse of the function F(x), then
𝑋 = 𝐹−1 (𝑈) ∼ 𝑌

• This is called the inverse transform method

• Proof: Since 𝑃{𝑈 ≤ 𝑢} = 𝑢 for all 𝑢 ∈ (0,1), we have

𝑃{𝑋 ≤ 𝑥} = 𝑃{𝐹−1 (𝑈) ≤ 𝑥} = 𝑃{𝑈 ≤ 𝐹(𝑥)} = 𝐹(𝑥)

Exp(λ) distribution

• Let 𝑈 ∼ 𝑈(0,1)
– Then also 1 − 𝑈 ∼ 𝑈(0,1)

• Let 𝑌 ∼ 𝐸𝑥𝑝(𝜆)

– 𝐹(𝑥) = 𝑃{𝑌 ≤ 𝑥} = 1 − 𝑒
− 𝜆𝑥 is strictly increasing

– The inverse transform is 𝐹−1 = −(1/𝜆) log(1 − 𝑦)

• Thus, by the inverse transform method,

𝑋 = 𝐹−1(1 − U) =
−1

λ
log(𝑈) ∼ 𝐸𝑥𝑝(𝜆)

N(0,1) distribution

• Let U1 ∼ U(0,1) and U2 ∼ U(0,1) be independent

• Then, by so called Box-Müller method,
the following two (transformed) random variables are independent and identically distributed
obeying the N(0,1) distribution:

𝑋1 = −2log(U1)sin(2𝜋𝑈2) ∼ 𝑁(0,1)

𝑋2 = −2log(U1)cos(2𝜋𝑈2) ∼ 𝑁(0,1)

N(μ,σ2) distribution

• Let 𝑋 ∼ 𝑁(0,1)

• Then, by the rescaling method,

𝑌 = 𝜇 + 𝜎𝑋 ∼ 𝑁(𝜇, 𝜎2)

Contents

• Introduction

• Generation of traffic process realizations

• Generation of random variable realizations

• Collection of data

• Statistical analysis

Collection of data

• Our starting point was that simulation is needed to estimate the value, say Θ, of some
performance parameter

– This parameter may be related to the transient or the steady-state behaviour of the system.

– Examples 1 & 2 (transient phase characteristics)

• average waiting time of the first k customers in an M/M/1 queue assuming that the
system is empty in the beginning

• average queue length in an M/M/1 queue during the interval [0,T] assuming that the
system is empty in the beginning

– Example 3 (steady-state characteristics)
• the average waiting time in an M/M/1 queue in equilibrium

• Each simulation run yields one sample, say X, describing somehow the parameter under
consideration

• For drawing statistically reliable conclusions,
multiple samples, X1,...,Xn, are needed (preferably IID)

Transient phase characteristics (1)

• Example 1:

– Consider e.g. the average waiting time of the first k customers in an M/M/1 queue assuming
that the system is empty in the beginning

– Each simulation run can be stopped when the kth customer enters the service

– The sample X based on a single simulation run is in this case:

𝑋 =
1

𝑘

𝑖=1

𝑘

𝑊𝑖

• Here Wi = waiting time of the ith customer in this simulation run

• Multiple IID samples, X1,...,Xn, can be generated by the method of independent replications:

– multiple independent simulation runs (using independent random numbers)

Transient phase characteristics (2)

• Example 2:

– Consider e.g. the average queue length in an M/M/1 queue during the interval [0,T] assuming
that the system is empty in the beginning

– Each simulation run can be stopped at time T (that is: simulation clock = T)

– The sample X based on a single simulation run is in this case:

𝑋 =
1

𝑇
න

0

𝑇

𝑄 𝑡 𝑑𝑡

• Here Q(t) = queue length at time t in this simulation run

• Note that this integral is easy to calculate, since Q(t) is piecewise constant

• Multiple IID samples, X1,...,Xn, can again be generated by the method of independent replications

Steady-state characteristics (1)

• Collection of data in a single simulation run is in principle similar to that of transient phase
simulations

• Collection of data in a single simulation run can typically (but not always) be done only after a
warm-up phase (hiding the transient characteristics) resulting in

– overhead =“extra simulation”

– bias in estimation

– need for determination of a sufficiently long warm-up phase

• Multiple samples, X1,...,Xn, may be generated by the following three methods:

– independent replications

– batch means

Steady-state characteristics (2)

• Method of independent replications:

– multiple independent simulation runs of the same system (using

independent random numbers)

– each simulation run includes the warm-up phase ⇒ inefficiency

– samples IID ⇒ accuracy

• Method of batch means:

– one (very) long simulation run divided (artificially) into one warm-up phase and n equal
length periods (each of which represents a single simulation run)

– only one warm-up phase ⇒ efficiency

– samples only approximately IID ⇒ inaccuracy,

• choice of n, the larger the better

Contents

• Introduction

• Generation of traffic process realizations

• Generation of random variable realizations

• Collection of data

• Statistical analysis

Parameter estimation

• As mentioned, our starting point was that simulation is needed to estimate the value, say Θ, of
some performance parameter

• Each simulation run yields a (random) sample, say Xi, describing somehow the parameter under
consideration

– Sample Xi is called unbiased if E[Xi] =Θ
• Assuming that the samples Xi are IID with mean Θ and variance σ2

– Then the sample average

ത𝑋𝑛: =
1

𝑛

𝑖=0

𝑛

𝑋𝑖

– is unbiased and consistent estimator of Θ, since

E[ത𝑋𝑛]: =
1

𝑛

𝑖=0

𝑛

𝐸 𝑋𝑖 = Θ

𝐷2[ത𝑋𝑛]: =
1

𝑛2

𝑖=0

𝑛

𝐷2 𝑋𝑖 =
1

𝑛
σ2→0 (as n→∞)

Example

• Consider the average waiting time of the first 25 customers in an M/M/1

queue with load ρ = 0.9 assuming that the system is empty in the beginning

– Theoretical value: Θ = 2.12 (non-trivial)

– Samples Xi from ten simulation runs (n = 10):

• 1.05,6.44,2.65,0.80,1.51,0.55,2.28,2.82,0.41,1.31

– Sample average (point estimate for Θ):

ത𝑋𝑛: =
1

𝑛

𝑖=0

𝑛

𝑋𝑖 =
1

10
(1.05+6.44+⋯+1.31)=1.98

Confidence interval (1)

• Definition: Interval (ത𝑋𝑛 − y, ത𝑋𝑛 + y) is called the confidence interval for the sample average at
confidence level 1 − α if

𝑃{| ത𝑋𝑛 − Θ | ≤ 𝑦} = 1 − α

– Idea: “with probability 1 − α, the parameter Θ belongs to this interval”

• Assume then that samples Xi, i = 1,...,n, are IID with unknown mean Θ but known variance σ2

• By the Central Limit Theorem (see Lecture 5, Slide 48), for large n,

Z:=
ത𝑋𝑛 − Θ

ൗ
σ

𝑛

≈ 𝑁(0,1)

Confidence interval(2)

• Let zp denote the p-fractile of the N(0,1) distribution
– That is : 𝑃{𝑍 ≤ zp} = 𝑝 ,𝑤ℎ𝑒𝑟𝑒 𝑍 ∼ 𝑁(0,1)
– Example : for α = 5% 𝑖. 𝑒. (1 − α = 95%) ⇒ 𝑍1−α

2
= 𝑧0.975 ≈ 1.96 ≈ 2.0

• Proposition: The confidence interval for the sample average at confidence level 1 − α is

ത𝑋𝑛 ± 𝑧
1−

α
2

𝜎

𝑛

• Proof: By definition, we have to show that

𝑃{| ത𝑋𝑛 − Θ| ≤ ത𝑋𝑛 ± 𝑧1−α
2

𝜎

𝑛
} = 1 − α

𝑃{| 𝑋𝑛 − Θ | ≤ 𝑦} = 1 − α

⇔ 𝑃{
| ത𝑋𝑛−Θ|

Τ𝜎 𝑛
≤

𝑦

Τ𝜎 𝑛
} = 1 − α

𝑃{
−𝑦

Τ𝜎 𝑛
≤

𝑋𝑛−Θ

Τ𝜎 𝑛
≤

𝑦

Τ𝜎 𝑛
}= 1 − α

⇔ Φ(
𝑦

Τ𝜎 𝑛
) − Φ(

−𝑦

Τ𝜎 𝑛
) = 1 − α [Φ(𝑥):= 𝑃{𝑍 ≤ 𝑥}]

⇔ Φ(
𝑦

Τ𝜎 𝑛
) − (1 − Φ(

𝑦

Τ𝜎 𝑛
)) = 1 − α [Φ(−𝑥) = 1 − Φ(𝑥)]

⇔ Φ(
𝑦

Τ𝜎 𝑛
) = 1 −

α

2

⇔
𝑦

Τ𝜎 𝑛
= 𝑧

1−
α
2

⇔ 𝑦 = 𝑧
1−

α
2

𝜎

𝑛

Confidence interval (3)

• In general, however, the variance σ2 is unknown (in addition to the mean Θ)

• It can be estimated by the sample variance:

𝑆𝑛
2: =

1

𝑛 − 1

𝑖=1

𝑛

(𝑋𝑖 − 𝑋𝑛)
2=

1

𝑛 − 1
(

𝑖=1

𝑛

𝑋𝑖
2 − 𝑛 ത𝑋𝑛

2)

• It is possible to prove that the sample variance is an unbiased and consistent estimator of σ2:

𝐸 𝑆𝑛
2 = 𝜎2

𝐷2 𝑆𝑛
2 → 0 (𝑛 → ∞)

Confidence interval (4)

• Assume that samples Xi are IID obeying the N(Θ,σ2) distribution with unknown mean Θ and
unknown variance σ2

• Then it is possible to show that

T:=
ത𝑋𝑛− Θ

Τ𝑆𝑛 𝑛
∼ 𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝑛 − 1)

• Let 𝑡𝑛−1,𝑝 denote the p-fractile of the Student(n−1) distribution

– That is: 𝑃{𝑇 ≤ 𝑡𝑛−1,𝑝} = 𝑝, where 𝑇 ∼ 𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝑛 − 1)

– Example 1: n = 10 and α = 5%, 𝑡𝑛−1,1− α

2
= t9,0.975 ≈ 2.26 ≈ 2.3

– Example 2: n = 100 and α = 5%, 𝑡𝑛−1,1− α

2
= t99,0.975 ≈ 1.98 ≈ 2.0

• Thus, the conf. interval for the sample average at conf. level 1 − α is

ത𝑋𝑛 ± 𝑡
𝑛−1,1−

α
2

𝑆𝑛

𝑛

Example (continued)

• Consider the average waiting time of the first 25 customers in an M/M/1

queue with load ρ = 0.9 assuming that the system is empty in the beginning

– Theoretical value: Θ = 2.12

– Samples 𝑋𝑖 from ten simulation runs (n = 10):

• 1.05,6.44,2.65,0.80,1.51,0.55,2.28,2.82,0.41,1.31

– Sample average = 1.98 and the square root of the sample variance:

𝑆𝑛 =
1

9
1.05 − 1.98 2 + …+ 1.31 − 1.98 2 = 1.78

– So, the confidence interval (that is: interval estimate for α) at confidence level 95% is

ത𝑋𝑛 ± 𝑡𝑛−1,1− 𝛼

2

𝑆𝑛

𝑛
= 1.98 ± 2.26 ⋅

1.78

10
= 1.98 ± 1.27 = (0.71,3.25)

Observations

• Simulation results become more accurate (that is: the interval estimate for α becomes narrower)
when

– the number n of simulation runs is increased, or

– the variance 𝜎2 of each sample is reduced

• by running longer individual simulation runs

• variance reduction methods

• Given the desired accuracy for the simulation results,
the number of required simulation runs can be determined dynamically

Literature

• I. Mitrani (1982)

– “Simulation techniques for discrete event systems”

– Cambridge University Press, Cambridge

• A.M. Law and W. D. Kelton (1982, 1991)

– “Simulation modeling and analysis”

– McGraw-Hill, New York

THE END

	Slide 1: Simulation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

