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Announcement 

• Aim of the lecture 

– To present simulation as one of the tools used in teletraffic theory 

– To give a brief overview of the different issues in simulation 

• The advanced studies module on Teletraffic theory has also a specialized course on simulation 

– S-38.3148 Simulation of data networks 

– Mandatory course in the Teletraffic theory advanced studies module 

– Pre-requisite info: S-38.1145 and programming skills (C/C++) 

– Lectured only every other year (take this into consideration when planning your studies!) 

– Lectured next time in fall 2008 



Contents

• Introduction 

• Generation of traffic process realizations 

• Generation of random variable realizations 

• Collection of data 

• Statistical analysis 



What is simulation? 

• Simulation is (at least from the teletraffic point of view) a statistical method to estimate the 
performance
(or some other important characteristic)
of the system under consideration. 

• It typically consists of the following four phases: 

– Modelling of the system (real or imaginary) as a dynamic stochastic process 

– Generation of the realizations of this stochastic process (“observations”) 
• Such realizations are called simulation runs 

– Collection of data (“measurements”) 

– Statistical analysis of the gathered data, and drawing conclusions 



Alternative to what?

• In previous lectures, we have looked at an alternative way to determine the performance: 
mathematical analysis 

• We considered the following two phases: 

– Modelling of the system as a stochastic process.
(In this course, we have restricted ourselves to birth-death processes.) 

– Solving of the model by means of mathematical analysis 

• The modelling phase is common to both of them 

• However, the accuracy (faithfulness) of the model that these methods allow can be very different 

– unlike simulation, mathematical analysis typically requires (heavily) restrictive assumptions to 
be made 



Performance analysis of a teletraffic system 



Analysis vs. simulation (1) 

• Pros of analysis 

– Results produced rapidly (after the analysis is made) 

– Exact (accurate) results (for the model) 

– Gives insight 

– Optimization possible (but typically hard) 

• Cons of analysis 

– Requires restrictive assumptions
⇒ the resulting model is typically too simple 

(e.g. only stationary behavior)
⇒ performance analysis of complicated systems impossible 

– Even under these assumptions, the analysis itself may be (extremely) hard 



Analysis vs. simulation (2) 

• Pros of simulation

– No restrictive assumptions needed (in principle) 

⇒ performance analysis of complicated systems possible

– Modelling straightforward 

• Cons of simulation

– Production of results time-consuming 

(simulation programs being typically processor intensive) 

– Results inaccurate (however, they can be made as accurate as required by increasing the 
number of simulation runs, but this takes even more time) 

– Does not necessarily offer a general insight 

– Optimization possible only between very few alternatives (parameter combinations or 
controls) 



Steps in simulating a stochastic process 

• Modelling of the system as a stochastic process 

– This has already been discussed in this course. 

– In the sequel, we will take the model (that is: the stochastic process) for granted. 

– In addition, we will restrict ourselves to simple teletraffic models. 

• Generation of the realizations of this stochastic process 

– Generation of random numbers 

– Construction of the realization of the process from event to event (discrete event simulation) 

– Often this step is understood as THE simulation, however this is not generally the case 

• Collection of data 

– Transient phase vs. steady state (stationarity, equilibrium) 

• Statistical analysis and conclusions 

– Point estimators 

– Confidence intervals 



Implementation 

• Simulation is typically implemented as a computer program 

• Simulation program generally comprises the following phases (excluding modelling and 
conclusions) 

– Generation of the realizations of the stochastic process 

– Collection of data 

– Statistical analysis of the gathered data 

• Simulation program can be implemented by 
– a general-purpose programming language • e.g. C or C++ 

• most flexible, but tedious and prone to programming errors 

– utilizing simulation-specific program libraries 

• e.g. CNCL
– utilizing simulation-specific software 

• e.g. OPNET, BONeS, NS (in part based on p-libraries) 

• most rapid and reliable (depending on the s/w), but rigid 



Other simulation types 

What we have described above, is a discrete event simulation
– the simulation is discrete (event-based), dynamic (evolving in time) and stochastic (including random 
components) 

– i.e. how to simulate the time evolvement of the mathematical model of the system under 
consideration, when the aim is to gather information on the system behavior 

– We consider only this type of simulation in this lecture 

• Other types: 

– continuous simulation: state and parameter spaces of the process are continuous; 
description of the system typically by differential equations, e.g. simulation of the trajectory of 
an aircraft 

– static simulation: time plays no role as there is no process that produces the events, e.g. 
numerical integration of a multi-dimensional integral by Monte Carlo method 

– deterministic simulation: no random components, e.g. the first example above 
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Generation of traffic process realizations 

• Assume that we have modelled as a stochastic process the evolution of the system 

• Next step is to generate realizations of this process. 

– For this, we have to: 
• Generate a realization (value) for all the random variables affecting the evolution of the process 
(taking properly into account all the (statistical) dependencies between these variables) 

• Construct a realization of the process (using the generated values) 

– These two parts are overlapping, they are not done separately 

– Realizations for random variables are generated by utilizing (pseudo) random number 
generators 

– The realization of the process is constructed from event to event (discrete event simulation) 



Discrete event simulation (1) 

• Idea: simulation evolves from event to event

– If nothing happens during an interval, we can just skip it! 

• Basic events modify (somehow) the state of the system
– e.g. arrivals and departures of customers in a simple teletraffic model 

• Extra events related to the data collection
– including the event for stopping the simulation run or collecting data 

• Event identification: 

– occurrence time (when event is handled) and 

– event type (what and how event is handled) 



Discrete event simulation (2) 

• Events are organized as an event list
– Events in this list are sorted in ascending order by the occurrence time 

• first: the event occurring next 

– Events are handled one-by-one (in this order) while, at the same time, generating new 
events to occur later 

– When the event has been processed, it is removed from the list 

• Simulation clock tells the occurrence time of the next event 

– progressing by jumps 

• System state tells the current state of the system 



Discrete event simulation (3) 

• General algorithm for a single simulation run: 

1 Initialization 
simulation clock = 0 

system state = given initial value 

for each event type, generate next event (whenever possible) 

construct the event list from these events 

2 Event handling 

simulation clock = occurrence time of the next event 

handle the event including 
– generation of new events and their addition to the event list 

– updating of the system state 

• delete the event from the event list 

3 Stopping test
• if positive, then stop the simulation run; otherwise return to 2 



Example (1) 

• Task: Simulate the M/M/1 queue (more precisely: the evolution of the queue length process) from 
time 0 to time T assuming that the queue is empty at time 0 and omitting any data collection 

– System state (at time t) = queue length Xt

• initial value: X0 = 0 

– Basic events: 

• customer arrivals 

• customer departures

– Extra event: 

• stopping of the simulation run at time T 

• Note: No collection of data in this example 



Example (2) 

• Initialization: 

– initialize the system state: 𝑋0 = 0

Example (2) 

– generate the time till the first arrival from the Exp(λ) distribution • Handling of an arrival event 
(occurring at some time t): 

– update the system state: 𝑋𝑡 = 𝑋𝑡 + 1

– if 𝑋𝑡 = 1, then generate the time (𝑡 + 𝑆) till the next departure, where S is 

from the 𝐸𝑥𝑝(𝜇) distribution
– generate the time (𝑡 + 𝐼) till the next arrival, where I is from the 𝐸𝑥𝑝(𝜆)

distribution 

• Handling of a departure event (occuring at some time t): 

– update the system state: 𝑋𝑡 = 𝑋𝑡 − 1

– if 𝑋𝑡 > 0, then generate the time (𝑡 + 𝑆) till the next departure, where S is 

from the 𝐸𝑥𝑝(𝜇) distribution • Stopping test: 𝑡 > 𝑇



Example (3) 
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Generation of random variable realizations 

• Based on (pseudo) random number generators 

• First step: 

– generation of independent uniformly distributed random variables between 0 and 1 (i.e. from 
𝑈(0,1) distribution) by using random number generators 

• Step from the U(0,1) distribution to the desired distribution: 

– rescaling (⇒ 𝑈(𝑎, 𝑏)) 

– discretization (⇒ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝), 𝐵𝑖𝑛(𝑛, 𝑝), 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑎), 𝐺𝑒𝑜𝑚(𝑝)) 

– inverse transform (⇒ 𝐸𝑥𝑝(𝜆)) 

– other transforms (⇒ 𝑁(0,1) ⇒ 𝑁(𝜇, 𝜎2)) 

– acceptance-rejection method (for any continuous random variable defined in a finite interval 
whose density function is bounded)

• two independent 𝑈(0,1) distributed random variables needed 



Random number generator 

• Random number generator is an algorithm generating (pseudo) random integers Zi in some 
interval 0,1, … ,𝑚 − 1

– The sequence generated is always periodic (goal: this period should be as long as possible) 

– Strictly speaking, the numbers generated are not random at all, but totally predictable (thus: 
pseudo) 

– In practice, however, if the generator is well designed, the numbers “appear” to be IID with 
uniform distribution inside the set {0,1, … ,𝑚 − 1}

• Validation of a random number generator can be based on empirical (statistical) and theoretical 
tests: 

– uniformity of the generated empirical distribution 

– independence of the generated random numbers (no correlation) 



Random number generator types 

• Linear congruential generator 

– the simplest one 

– next random number is based on just the current one: 𝑍𝑖 + 1 =
𝑓(𝑍𝑖) ⇒ period at most m 

• Multiplicative congruential generator 

– even simpler 

– a special case of the first type 

• Others: 

– Additive congruential generators, shuffling, etc. 



Linear congruential generator (LCG) 

• Linear congruential generator (LCG) uses the following algorithm to generate random numbers 
belonging to {0,1,..., m−1}: 

𝑍𝑖 + 1 =
𝑎𝑍𝑖 + 𝑐 𝑚𝑜𝑑 𝑚

– Here a, c and m are fixed non-negative integers (𝑎 < 𝑚, 𝑐 < 𝑚)

– In addition, the starting value (seed) 𝑍0 < 𝑚 should be specified 

• Remarks: 

– Parameters a, c and m should be chosen with care, otherwise the result can be very poor 

– By a right choice of parameters,
it is possible to achieve the full period m 

• e.g.𝑚 = 2𝑏, 𝑐 𝑜𝑑𝑑, 𝑎 = 4𝑘 + 1(𝑏 𝑜𝑓𝑡𝑒𝑛 48)



Multiplicative congruential generator (MCG) 

• Multiplicative congruential generator (MCG) uses the following algorithm to generate random 
numbers belonging to {0,1,..., m−1}: 

𝑍𝑖 + 1 = (
𝑎𝑍𝑖)𝑚𝑜𝑑𝑚

– Here a and m are fixed non-negative integers (a < m) 

– In addition, the starting value (seed) Z0 < m should be specified 

• Remarks: 

– MCG is clearly a special case of LCG: c = 0 

– Parameters a and m should (still) be chosen with care 

– In this case, it is not possible to achieve the full period m 

• e.g. if 𝑚 = 2𝑏, then the maximum period is 2𝑏−2

– However, for m prime, period m−1 is possible (by a proper choice of a) 

PMMLCG = prime modulus multiplicative LCG 

e.g. m = 231−1 and a = 16,807 (or 630,360,016) 



U(0,1) distribution 

• Let Z denote a (pseudo) random number belonging to {0,1, … ,𝑚 − 1}

• Then (approximately) 

U =
𝑍

𝑚
≈ 𝑈(0,1)



U(a,b) distribution 

• Let 𝑈 ∼ 𝑈(0,1)

• Then 

𝑋 = 𝑎 + (𝑏 − 𝑎)𝑈 ∼ 𝑈(𝑎, 𝑏)

• This is called the rescaling method 



Discretization method 

• Let 𝑈 ∼ 𝑈(0,1)

• Assume that Y is a discrete random variable 

– with value set 𝑆 = {0,1, … , 𝑛} 𝑜𝑟 𝑆 = {0,1,2, … }

• Denote: 𝐹(𝑥) = 𝑃{𝑌 ≤ 𝑥}, then 

𝑋 = min{𝑥 ∈ 𝑆|𝐹(𝑥) ≥ 𝑈} ∼ 𝑌

• This is called the discretization method 

– a special case of the inverse transform method 

• Example: Bernoulli(p) distribution

X = ቊ
0, 𝑖𝑓 𝑈 ≤ 1 − 𝑝
1, 𝑖𝑓 𝑈 > 1 − 𝑝

~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝)



Inverse transform method 

• Let 𝑈 ∼ 𝑈(0,1)

• Assume that Y is a continuous random variable 

• Assume further that 𝐹(𝑥) = 𝑃{𝑌 ≤ 𝑥} is strictly increasing 

• Let F−1(y) denote the inverse of the function F(x), then 
𝑋 = 𝐹−1 (𝑈) ∼ 𝑌

• This is called the inverse transform method 

• Proof: Since 𝑃{𝑈 ≤ 𝑢} = 𝑢 for all 𝑢 ∈ (0,1), we have

𝑃{𝑋 ≤ 𝑥} = 𝑃{𝐹−1 (𝑈) ≤ 𝑥} = 𝑃{𝑈 ≤ 𝐹(𝑥)} = 𝐹(𝑥)



Exp(λ) distribution 

• Let 𝑈 ∼ 𝑈(0,1)
– Then also 1 − 𝑈 ∼ 𝑈(0,1)

• Let 𝑌 ∼ 𝐸𝑥𝑝(𝜆)

– 𝐹(𝑥) = 𝑃{𝑌 ≤ 𝑥} = 1 − 𝑒
− 𝜆𝑥 is strictly increasing 

– The inverse transform is 𝐹−1 = −(1/𝜆) log(1 − 𝑦)

• Thus, by the inverse transform method, 

𝑋 = 𝐹−1(1 − U) =
−1

λ
log(𝑈) ∼ 𝐸𝑥𝑝(𝜆)



N(0,1) distribution 

• Let U1 ∼ U(0,1) and U2 ∼ U(0,1) be independent 

• Then, by so called Box-Müller method,
the following two (transformed) random variables are independent and identically distributed 
obeying the N(0,1) distribution: 

𝑋1 = −2log(U1)sin(2𝜋𝑈2) ∼ 𝑁(0,1)

𝑋2 = −2log(U1)cos(2𝜋𝑈2) ∼ 𝑁(0,1)



N(μ,σ2) distribution 

• Let 𝑋 ∼ 𝑁(0,1)

• Then, by the rescaling method, 

𝑌 = 𝜇 + 𝜎𝑋 ∼ 𝑁(𝜇, 𝜎2)
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Collection of data 

• Our starting point was that simulation is needed to estimate the value, say Θ, of some 
performance parameter 

– This parameter may be related to the transient or the steady-state behaviour of the system. 

– Examples 1 & 2 (transient phase characteristics) 

• average waiting time of the first k customers in an M/M/1 queue assuming that the 
system is empty in the beginning 

• average queue length in an M/M/1 queue during the interval [0,T] assuming that the 
system is empty in the beginning 

– Example 3 (steady-state characteristics)
• the average waiting time in an M/M/1 queue in equilibrium 

• Each simulation run yields one sample, say X, describing somehow the parameter under 
consideration 

• For drawing statistically reliable conclusions,
multiple samples, X1,...,Xn, are needed (preferably IID) 



Transient phase characteristics (1) 

• Example 1: 

– Consider e.g. the average waiting time of the first k customers in an M/M/1 queue assuming 
that the system is empty in the beginning 

– Each simulation run can be stopped when the kth customer enters the service 

– The sample X based on a single simulation run is in this case: 

𝑋 =
1

𝑘


𝑖=1

𝑘

𝑊𝑖

• Here Wi = waiting time of the ith customer in this simulation run 

• Multiple IID samples, X1,...,Xn, can be generated by the method of independent replications: 

– multiple independent simulation runs (using independent random numbers) 



Transient phase characteristics (2) 

• Example 2: 

– Consider e.g. the average queue length in an M/M/1 queue during the interval [0,T] assuming 
that the system is empty in the beginning 

– Each simulation run can be stopped at time T (that is: simulation clock = T) 

– The sample X based on a single simulation run is in this case: 

𝑋 =
1

𝑇
න

0

𝑇

𝑄 𝑡 𝑑𝑡

• Here Q(t) = queue length at time t in this simulation run 

• Note that this integral is easy to calculate, since Q(t) is piecewise constant

• Multiple IID samples, X1,...,Xn, can again be generated by the method of independent replications 



Steady-state characteristics (1) 

• Collection of data in a single simulation run is in principle similar to that of transient phase 
simulations 

• Collection of data in a single simulation run can typically (but not always) be done only after a 
warm-up phase (hiding the transient characteristics) resulting in 

– overhead =“extra simulation” 

– bias in estimation 

– need for determination of a sufficiently long warm-up phase 

• Multiple samples, X1,...,Xn, may be generated by the following three methods: 

– independent replications 

– batch means 



Steady-state characteristics (2) 

• Method of independent replications:

– multiple independent simulation runs of the same system (using 

independent random numbers) 

– each simulation run includes the warm-up phase ⇒ inefficiency 

– samples IID ⇒ accuracy 

• Method of batch means: 

– one (very) long simulation run divided (artificially) into one warm-up phase and n equal 
length periods (each of which represents a single simulation run) 

– only one warm-up phase ⇒ efficiency 

– samples only approximately IID ⇒ inaccuracy, 

• choice of n, the larger the better 
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Parameter estimation 

• As mentioned, our starting point was that simulation is needed to estimate the value, say Θ, of 
some performance parameter 

• Each simulation run yields a (random) sample, say Xi, describing somehow the parameter under 
consideration 

– Sample Xi is called unbiased if E[Xi] =Θ
• Assuming that the samples Xi are IID with mean Θ and variance σ2

– Then the sample average

ത𝑋𝑛: =
1

𝑛


𝑖=0

𝑛

𝑋𝑖

– is unbiased and consistent estimator of Θ, since 

E[ ത𝑋𝑛]: =
1

𝑛


𝑖=0

𝑛

𝐸 𝑋𝑖 = Θ

𝐷2[ ത𝑋𝑛]: =
1

𝑛2


𝑖=0

𝑛

𝐷2 𝑋𝑖 =
1

𝑛
σ2→0 (as n→∞)



Example 

• Consider the average waiting time of the first 25 customers in an M/M/1 

queue with load ρ = 0.9 assuming that the system is empty in the beginning 

– Theoretical value: Θ = 2.12 (non-trivial) 

– Samples Xi from ten simulation runs (n = 10): 

• 1.05,6.44,2.65,0.80,1.51,0.55,2.28,2.82,0.41,1.31 

– Sample average (point estimate for Θ): 

ത𝑋𝑛: =
1

𝑛


𝑖=0

𝑛

𝑋𝑖 =
1

10
(1.05+6.44+⋯+1.31)=1.98



Confidence interval (1) 

• Definition: Interval ( ത𝑋𝑛 − y, ത𝑋𝑛 + y) is called the confidence interval for the sample average at 
confidence level 1 − α if 

𝑃{| ത𝑋𝑛 − Θ | ≤ 𝑦} = 1 − α

– Idea: “with probability 1 − α, the parameter Θ belongs to this interval”

• Assume then that samples Xi, i = 1,...,n, are IID with unknown mean Θ but known variance σ2

• By the Central Limit Theorem (see Lecture 5, Slide 48), for large n, 

Z:=
ത𝑋𝑛 − Θ

ൗ
σ

𝑛

≈ 𝑁(0,1)



Confidence interval(2) 

• Let zp denote the p-fractile of the N(0,1) distribution
– That is : 𝑃{𝑍 ≤ zp} = 𝑝 ,𝑤ℎ𝑒𝑟𝑒 𝑍 ∼ 𝑁(0,1)
– Example : for α = 5% 𝑖. 𝑒. (1 − α = 95%) ⇒ 𝑍1−α

2
= 𝑧0.975 ≈ 1.96 ≈ 2.0

• Proposition: The confidence interval for the sample average at confidence level 1 − α is 

ത𝑋𝑛 ± 𝑧
1−

α
2

𝜎

𝑛

• Proof: By definition, we have to show that 

𝑃{| ത𝑋𝑛 − Θ| ≤ ത𝑋𝑛 ± 𝑧1−α
2

𝜎

𝑛
} = 1 − α



𝑃{| 𝑋𝑛 − Θ | ≤ 𝑦} = 1 − α

⇔ 𝑃{
| ത𝑋𝑛−Θ|

Τ𝜎 𝑛
≤

𝑦

Τ𝜎 𝑛
} = 1 − α

𝑃{
−𝑦

Τ𝜎 𝑛
≤

𝑋𝑛−Θ

Τ𝜎 𝑛
≤  

𝑦

Τ𝜎 𝑛
}= 1 − α

⇔ Φ(
𝑦

Τ𝜎 𝑛
) − Φ(

−𝑦

Τ𝜎 𝑛
) = 1 − α [Φ(𝑥):= 𝑃{𝑍 ≤ 𝑥}]

⇔ Φ(
𝑦

Τ𝜎 𝑛
) − (1 − Φ(

𝑦

Τ𝜎 𝑛
)) = 1 − α [Φ(−𝑥) = 1 − Φ(𝑥)]

⇔ Φ(
𝑦

Τ𝜎 𝑛
) = 1 −

α

2

⇔
𝑦

Τ𝜎 𝑛
= 𝑧

1−
α
2

⇔ 𝑦 = 𝑧
1−

α
2

𝜎

𝑛



Confidence interval (3) 

• In general, however, the variance σ2 is unknown (in addition to the mean Θ) 

• It can be estimated by the sample variance:

𝑆𝑛
2: =

1

𝑛 − 1


𝑖=1

𝑛

(𝑋𝑖 − 𝑋𝑛)
2=

1

𝑛 − 1
(

𝑖=1

𝑛

𝑋𝑖
2 − 𝑛 ത𝑋𝑛

2)

• It is possible to prove that the sample variance is an unbiased and consistent estimator of σ2: 

𝐸 𝑆𝑛
2 = 𝜎2

𝐷2 𝑆𝑛
2 → 0 (𝑛 → ∞)



Confidence interval (4) 

• Assume that samples Xi are IID obeying the N(Θ,σ2) distribution with unknown mean Θ and 
unknown variance σ2

• Then it is possible to show that 

T:=
ത𝑋𝑛− Θ

Τ𝑆𝑛 𝑛
∼ 𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝑛 − 1)

• Let 𝑡𝑛−1,𝑝 denote the p-fractile of the Student(n−1) distribution 

– That is: 𝑃{𝑇 ≤ 𝑡𝑛−1,𝑝} = 𝑝, where 𝑇 ∼ 𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝑛 − 1)

– Example 1: n = 10 and α = 5%, 𝑡𝑛−1,1− α

2
= t9,0.975 ≈ 2.26 ≈ 2.3 

– Example 2: n = 100 and α = 5%, 𝑡𝑛−1,1− α

2
= t99,0.975 ≈ 1.98 ≈ 2.0 

• Thus, the conf. interval for the sample average at conf. level 1 − α is 

ത𝑋𝑛 ± 𝑡
𝑛−1,1−

α
2

𝑆𝑛

𝑛



Example (continued) 

• Consider the average waiting time of the first 25 customers in an M/M/1 

queue with load ρ = 0.9 assuming that the system is empty in the beginning 

– Theoretical value: Θ = 2.12 

– Samples 𝑋𝑖 from ten simulation runs (n = 10): 

• 1.05,6.44,2.65,0.80,1.51,0.55,2.28,2.82,0.41,1.31 

– Sample average = 1.98 and the square root of the sample variance: 

𝑆𝑛 =
1

9
1.05 − 1.98 2 + …+ 1.31 − 1.98 2 = 1.78

– So, the confidence interval (that is: interval estimate for α) at confidence level 95% is 

ത𝑋𝑛 ± 𝑡𝑛−1,1− 𝛼

2

𝑆𝑛

𝑛
= 1.98 ± 2.26 ⋅

1.78

10
= 1.98 ± 1.27 = (0.71,3.25)



Observations 

• Simulation results become more accurate (that is: the interval estimate for α becomes narrower) 
when 

– the number n of simulation runs is increased, or 

– the variance 𝜎2 of each sample is reduced 

• by running longer individual simulation runs 

• variance reduction methods 

• Given the desired accuracy for the simulation results,
the number of required simulation runs can be determined dynamically 



Literature 

• I. Mitrani (1982) 

– “Simulation techniques for discrete event systems” 

– Cambridge University Press, Cambridge 

• A.M. Law and W. D. Kelton (1982, 1991) 

– “Simulation modeling and analysis” 

– McGraw-Hill, New York 



THE END 
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