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The M/M/1 queue

Number of customers in an M/M/1 queue

By the method of a cut, one gets the balance condition

𝜆𝜋n−1 = 𝜇𝜋𝑛 or 𝜋n = 𝜌𝜋𝑛−1 where 𝜌 = 𝜆/𝜇
(traffic intensity, 

offered load),

from which we get recursively

𝜋n = 𝜌𝑛𝜋0

The probability of an empty queue 0 is obtained from the normalization condition

𝜋0 + 𝜋1 + 𝜋2+. . . = 1

𝜋0 = 1/

𝑛=0

∞

𝜌𝑛 = 1 − 𝜌

(the probability that the server (ant the queue) is empty

= 1 − 𝜌 ⇒

probability that the server is busy = )
The queue length distribution of an M/M/1 queue, 𝜋n = P{N = n},

𝜋n = (1 − 𝜌) 𝜌n n = 0, 1, . . . distribution (starts from 0))(Geom0 
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(in order for the queue to be stable, we have to require < 1)

exponential
period of service

Poisson
Arrivals

l m



The average number of customers in the system



𝑖=0

∞

𝑖𝜋𝑖E[N] =

the mean of the                        distribution (starts   from 0)Geom0(𝜌)
=

𝜌

1 − 𝜌

E[N] =
𝜌

1 − 𝜌
= 

customers in
the server

+
𝜌2

1 − 𝜌

waiting
customers
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𝐸 𝑁2 = σ𝑖=0
∞ 𝑖2𝜋𝑖 = (1 − 𝜌)σ𝑖=0

∞ 𝑖2𝜌𝑖 = (1 − 𝜌)
𝜌+𝜌2

(1−𝜌)3
=

𝜌+𝜌2

(1−𝜌)2

σ𝑖=0
∞ 𝜌𝑖 =1+ 𝜌+ 𝜌2 +⋯=

1

1−𝜌
σ𝑖=1
∞ 𝜌𝑖 = 1+ 𝜌+ 𝜌2 +⋯ = 𝜌 (1+ 𝜌+ 𝜌2 +⋯) = 𝜌(

1

1−𝜌
)

= (1 − 𝜌)

𝑖=0

∞

𝑖𝜌𝑖 = (1 − 𝜌)𝜌
𝑑

𝑑𝜌


𝑖=0

∞

𝜌𝑖 = (1 − 𝜌)𝜌
𝑑

𝑑𝜌
(

1

1 − 𝜌
)

====================================================================



The average number of customers in the system

The tail probability: the probability that there 
are at least n customers in the system,

𝑃{𝑁 ≥ 𝑛} = σ𝑖=𝑛
∞ 𝜋𝑖 = 1 − 𝜌 σ𝑖=𝑛

∞ 𝜌𝑖 = 1 − 𝜌 σ𝑘=0
∞ 𝜌𝑘+𝑛

= 𝜌𝑛 1 − 𝜌 σ𝑘=0
∞ 𝜌𝑘 = 𝜌𝑛 1 − 𝜌

1

1−𝜌
= 𝜌𝑛
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Q: what is VAR[N] 

A: Var[N]= 𝐸 𝑁2 - 𝐸[𝑁]2 =
𝜌+𝜌2

(1−𝜌)2
-

𝜌

1−𝜌

2
= 

𝜌+𝜌2

(1−𝜌)2
-

𝜌2

(1−𝜌)2
=

𝜌

(1−𝜌)2

E[N]= σ𝑛=0
∞ 𝑃 𝑁 > 𝑛 = 𝜌+ 𝜌2 +⋯= 𝜌

1

1−𝜌
or  E[N]= σ𝑛=1

∞ 𝑃 𝑁 ≥ 𝑛 = 𝜌+ 𝜌2 +⋯ = 𝜌
1

1−𝜌

Using Tail Sum formula  and 

for power series σ𝑛=0
∞ 𝜌𝑛=

1

1−𝜌
for 𝜌 < 1 :

𝜌𝑛 𝑑𝜌 =
𝜌𝑛+1

𝑛+1
, 

න
0

∞

𝑃 𝑁𝑛 ≤ 𝑑𝑛 = න
0

∞

𝜌𝑛 𝑑𝑛 =
𝜌𝑛

ln(𝜌)
0

∞

#######################################################################



Example.
• Router A sends 8 packets per second, on the

average, to router B.

• The mean size of a packet is 400 byte 
(exponentially distributed).

• The line speed is 64 kbit/s.

How many packets are there on the average in router A waiting for transmission or being
transmitted and what is the probability that the number is 10 or more?
The utilization of the line (server) is

𝜌 = (8 s−1 × 400 × 8 bit)/(64 × 103 bit s−1) = 0.4.

This can be also calculated in the form  λ/μ, where

 packets/s 20  )bit/packet 80kbit/s/(40 64   packets/s, 8  === ml => 0.4  8/20  / ==ml

Thus E[N] = 0.4/(1 − 0.4) = 0.67.

The probability that the number of packets is 10 or more is 0.410 = 10−45

8 packets /S

𝑃{𝑁 ≥ 𝑛} = 𝜌𝑛Using  tail probability



Sojourn and waiting times in the M/M/1 queue

Little’s result:

The average sojourn time (time in system)

The average waiting time

𝐸[𝑇] = 𝐸[𝑁]/𝜆

𝐸[𝑊] = (𝐸[𝑁] − 𝜌)/𝜆

𝐸[𝑇] =
𝜌

1 − 𝜌
/𝜆 =

1

1 − 𝜌
∙
1

𝜇
=

1

𝜇 − 𝜆

𝐸 𝑊 = (
𝜌

1 − 𝜌
− 𝜌)/𝜆 = (

1

1 − 𝜌
− 1)𝜌/𝜆 =

𝜌

1 − 𝜌
∙
1

𝜇
=

𝜆

𝜇(𝜇 − 𝜆)
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Independence of the scheduling discipline

For the M/M/1-FIFO queue we have derived the queue length 

distribution

• This distribution is independent of the scheduling discipline (FIFO, 
LIFO, PS),

– all these scheduling disciplines lead to exactly the same balance 
equations (proof is left as an exercise)

• Thus also the mean time in system,                                         is 
independent of the discipline  (by Little’s result the mean time in 
system equals the mean queue length divided by λ )

• In contrast, e.g. the distributions of W and T do depend on the 
discipline.

Note. The queue length distribution is not insensitive to the service 
time distribution in an M/M/1-FIFO queue. However, in LIFO and PS 
queues the insensitivity holds. 

𝜋𝑛 = (1 − 𝜌)𝜌𝑛

𝐸[𝑇] = 1/(𝜇 − 𝜆)
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The distribution of the sojourn time

Assume that an arriving customer finds N customers in the

system (including the customer in the server, if any).
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By the memoryless property of the exponential distribution
also the remaining service time of the customer in service (if
any) is distributed as ~𝐸𝑥𝑝(𝜇).

The time T spent by a customer in the system consists of the time it takes to serve 
the customers ahead in the queue and the customer’s own service time

𝑇 = 𝑆1
′ + 𝑆2+. . . +𝑆𝑁

𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠

+ ถ𝑆𝑁+1
𝑜𝑤𝑛

sum of (N + 1) rvs with Exp(μ) distribution

ቊ
𝑆𝑖~𝐸𝑥𝑝(𝜇)
𝑁~𝐺𝑒𝑜𝑚0(𝜌)

independent

equilibrium distribution of the queue length (starts from 0), PASTA!

𝑓𝑇(𝑡) = 

𝑛=0

∞

𝑓 ȁ𝑇 𝑁 (𝑡, 𝑛)𝑃{𝑁 = 𝑛} = 

𝑛=0

∞

𝜇
(𝜇𝑡)𝑛

𝑛!
𝑒−𝜇𝑡

𝐸𝑟𝑙𝑎𝑛𝑔(𝑛+1,𝜇)

(1 − 𝜌)𝜌𝑛

= 𝜇(1 − 𝜌)𝑒−𝜇𝑡 

𝑛=0

∞
(𝜇𝜌𝑡)𝑛

𝑛!
= 𝜇(1 − 𝜌)𝑒−𝜇(1−𝜌)𝑡

exponential distribution Exp(𝜇 − 𝜆)𝑓𝑇(𝑡) = (𝜇 − 𝜆)𝑒−(𝜇−𝜆)𝑡



The distribution of the sojourn time (continued)

The same result can be derived also by using the result for the Laplace transform of a 
random Sum.
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ℒ𝑁+1(𝑧) =
(1 − 𝜌)𝑧

1 − 𝜌𝑧

𝑓𝑆
∗(𝑠) =

𝜇

𝜇 + 𝑠

𝑁 + 1~𝐺𝑒𝑜𝑚(1 − 𝜌), starts  from  1

𝑓𝑇
∗(𝑠) = ℒ𝑁+1(𝑓𝑆

∗(𝑠)) =
(1 − 𝜌)

𝜇
𝜇 + 𝑠

1 − 𝜌
𝜇

𝜇 + 𝑠

=
𝜇 − 𝜆

(𝜇 + 𝑠) − 𝜆
=

(𝜇 − 𝜆)

(𝜇 − 𝜆) + 𝑠

⇒ ~𝐸𝑥𝑝(𝜇 − 𝜆)



Distribution of the waiting time

The waiting time W consists of the service times of the customers in the system upon 
the arrival
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𝑊 = 𝑆1
′ + 𝑆2+. . . +𝑆𝑁 , where Si ~ Exp(𝜇) and N                                    (starts from 0)~𝐺𝑒𝑜𝑚0(1 − 𝜌)

If N = 0 there are no terms in the sum and W = 0.
The tail distribution of W is derived by conditioning

𝑃{𝑊 > 𝑡} = 𝑃{𝑊 > 𝑡ห𝑁 = 0}𝑃(𝑁 = 0) + 𝑃{𝑊 > 𝑡ȁ𝑁 > 0}𝑃{𝑁 > 0}
𝜌

= 𝜌. 𝑃{𝑊 > 𝑡ȁ𝑁 > 0}

By the memoryless property of the geometric distribution N conditioned on N > 0 is  
distributed as as (starts from 1))( Geom

Thus the sum 𝑆1
′ + 𝑆2+. . . +𝑆𝑁 conditioned on N > 0 is distributed precisely as 𝑆1

′ + 𝑆2+. . . +𝑆𝑁+1

before and obeys the distribution 𝐸𝑥𝑝 𝜇 − 𝜆 ; 𝑖. 𝑒. 𝐹𝑇 𝑡 = 1 − 𝑒−(𝜇−𝜆)𝑡

𝑃 𝑊 > 𝑡 = 𝜌𝑒− 𝜇−𝜆 𝑡 ; 𝑠𝑜 𝑃{𝑊 > 0} = 𝜌

The waiting time is 0 with a finite probability P{W = 0} = 1 − P{W > 0} =1 − 𝜌

This, of course, is equal to the empty queue probability P{N = 0}



Finite queue: the M/M/1/K system

Let there be K system places (waiting room + server)

The equilibrium equations across the cuts are the same as before

11

𝜋𝑛 = 𝜌𝑛𝜋0 𝑛 = 0,1, . . . , 𝐾

The only difference is in the normalization



𝑛=0

𝐾

𝜋𝑛 = 1  𝜋0 = (1 + 𝜌+. . . +𝜌𝐾)−1 =
1 − 𝜌

1 − 𝜌𝐾+1

𝜋𝑛 =
𝜌𝑛

1 + 𝜌+. . . +𝜌𝐾
=

1 − 𝜌

1 − 𝜌𝐾+1
𝜌𝑛 𝑛 = 0,1, . . . , 𝐾 trunc. geom. distribution

• The probability K of state K is the probability that an arriving customer finds the
system full (“the buffer overflows”).
• When K = 1, we have a single server loss system ,

𝜋𝑛 =
𝜌𝑛

1 + 𝜌 𝑛 = 0,1



The M/M/m queue (Erlang’s waiting system)

• m parallel servers

• Poisson arrivals

• Exponential service time distribution
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• The state transition diagram is, up to state m the same as in the loss system.
• Beyond that state, it is identical with the diagram of an M/M/1 queue where the 
capacity of the server is mμ.



The balance equations can again be written by using the method of a cut:
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ቊ
𝜆𝜋𝑛−1 = 𝑛𝜇𝜋𝑛,
𝜆𝜋𝑛−1 = 𝑚𝜇𝜋𝑛,

𝑛 ≤ 𝑚

𝑛 > 𝑚

The solution up to a constant factor             is0

𝜋𝑛 = 𝜋0
(𝑚𝜌)𝑛

𝑛!
,

𝜋𝑛 = 𝜋0
𝑚𝑚𝜌𝑛

𝑚!
,

𝑛 ≤ 𝑚

𝑛 > 𝑚

𝑎 = 𝜆/𝜇

𝜌 = 𝜆/𝑚𝜇 = 𝑎/𝑚

traffic intensity

traffic intensity per server.

The probability          of state 0 is determined by the normalization condition𝜋0 

𝑛

𝜋𝑛 = 1

𝜋0 = (

𝑚=0

𝑚−1
(𝑚𝜌)𝑛

𝑛!

𝑢

+
(𝑚𝜌)𝑚

𝑚! 1 − 𝜌
𝑣

)−1 ⇒ 𝜋0 == (𝑢 + 𝑣)−1

The probability that upon an arrival all servers are busy and the customer has to wait is𝑃𝑞

𝑃𝑞 = 𝐶(𝑚, 𝑎) = 

𝑛=𝑚

∞

𝜋𝑛 = 

𝑛=𝑚

∞
𝜋0𝑚

𝑚𝜌𝑛

𝑚!
=

𝜋0(𝑚𝜌)
𝑚

𝑚! (1 − 𝜌)
=

𝑣

𝑢 + 𝑣

Erlang’s C formula

𝑎 = 𝑚𝜌, 𝜌 = 𝑎/𝑚
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The mean number of waiting customers 𝑁𝑞

𝑁𝑞 = 

𝑛=0

∞

𝑛𝜋𝑚+𝑛 = 

𝑛=0

∞

𝑛𝜋0
𝑚𝑚𝜌𝑚+𝑛

𝑚!
= 𝑃𝑞 

𝑛=0

∞

𝑛(1 − 𝜌)𝜌𝑛

The sum is of the same form as the mean queue length in an M/M/1 queue. Thus

𝑁𝑞 = 𝑃𝑞
𝜌

1 − 𝜌 𝑁 = 𝑚𝜌 + 𝑁𝑞  𝑁 = 𝑚𝜌 + 𝑃𝑞
𝜌

1 − 𝜌

By Little’s result we obtain the mean waiting and sojourn times:

𝑊 =
𝑁𝑞

𝜆
= 𝑃𝑞

𝜌

1 − 𝜌
/𝜆 = 𝑃𝑞 ∙

1

𝑚𝜇 − 𝜆

𝑇 =
𝑁

𝜆
=
1

𝜇
+𝑊 =

1

𝜇
+ 𝑃𝑞 ∙

1

𝑚𝜇 − 𝜆

𝜌 = 𝜆/𝑚𝜇



The distribution of the waiting time
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𝑃{𝑊 > 𝑡} = 𝑃{𝑊 > 𝑡ห𝑁 < 𝑚}𝑃{𝑁 < 𝑚} + 𝑃{𝑊 > 𝑡ȁ𝑁 ≥ 𝑚}𝑃{𝑁 ≥ 𝑚}

When N  m the system behaves as an M/M/1 queue
with capacity 𝑚𝜇

𝑃{𝑊 > 𝑡} = 𝑃𝑞𝑒
−(𝑚𝜇−𝜆)𝑡



Example 1
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A printer is attached to the LAN of the department. The printing jobs are assumed to  
with arrive a Poissonian intensity        and the actual printing times are assumed to 
obey the distribution Exp(μ).

𝜆

The capacity of the printer has become insufficient with regard to the increased load. 
In order to improve the printing service, there are three alternatives:

1. Replace the old printer by a new one twice as fast, i.e.
with service rate 2μ.

2. Add another similar printer (service rate μ) and divide
the users in two groups of equal size directing the works
in each group to their own printer. The arrival rate of
jobs to each printer is 𝜆/2.

3. The same as alternative 2, but now there is a common
printer queue where all jobs are taken and the job at the
head of the queue is sent to whichever printer becomes
free first.



Example 1 (continued)
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Lut us compare the performance of the alternatives at different loads. As measure of 
performance we use the mean sojourn time of a job         (time in system, from the 
arrival of the printing job to the full completion of the job).

𝑇

1. In this case we have an M/M/1 queue with parameters       and 2μ.𝜆

𝜌 =
𝜆

2𝜇
𝑇1 =

1

2𝜇 − 𝜆
=

1

1 − 𝜌
.
1

2𝜇

2. Now we have two separate M/M/1 queues with parameters        /2 and μ.l

𝜌 =
𝜆/2

𝜇
=

𝜆

2𝜇 𝑇2 =
1

𝜇 − 𝜆/2
=

1

1 − 𝜌
∙
1

𝜇

The load per server is the same as before. Now just everything happens two 
times slower (both arrivals and the service).

3. In the case of a common printing queue, an appropriate model is the M/M/2 
queue with parameters       and μ.l

𝜌 =
𝜆

2𝜇 𝑇3 =
1

𝜇
+ 𝑃𝑞

1

2𝜇 − 𝜆
≈

1

𝜇
1

1 − 𝜌
∙
1

2𝜇

𝜌 << 1

𝜌 ≈ 1

E T =
1

𝜇 − 𝜆



Example 1: Summary of the comparison
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Take case 1 as the reference: calculate the sojourn
times in cases 2 and 3 in relation to that in case 1 

• Alternative 1, i.e. one fast printer is the best one.
• In alternative 2, the sojourn time is twice as long as in case 1.
• In case 3, the second printer does not help at all at low loads: each job is taken 
directly into the service (without waiting) but the actual printing takes twice the time as 
with the fast printer.
• At heavy loads, the mean sojourn time of case 3 is the same as in case 1 (in both cases 
it consists mainly of the waiting). Two slow printers fed by a common queue discharge 
the work in the queue as efficiently as one fast printer.
• This is not the case for the alternative 2. When the queues are separate, it is possible 
that one printer stays idle while there are jobs waiting in the queue for the other 
printer. This deteriorates the overall performance in such a way that also at high loads 
alternative 2 is on the average two times slower than alternative 1.



Example 2
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• A telephone switch is modelled as an M/M/m system (when all lines are busy, the 
callers are let to wait by signaling them the ring tone)
• How many lines (m) are needed that the probability that a caller has to wait longer 
than time  𝑡𝑚𝑎𝑥 is less than 1 % ?

𝑃 𝑊 > 𝑡𝑚𝑎𝑥 < 0.01 ⇒ 𝑃𝑞𝑒
−(𝑚𝜇−𝜆)𝑡𝑚𝑎𝑥 < 0.01

m >
log(100𝑃𝑞) + 𝜆𝑡𝑚𝑎𝑥

𝜇𝑡𝑚𝑎𝑥

is a function of m (monotonically decreasing); thus the inequality is still an implicit one.

It can be solved by trying sequentially values m = 1, 2, 3, . . . until the inequality is satisfied.

By letting the callers to wait for a free line for a while before blocking them, the number
of blocked calls can be reduced or, conversely, the load of the system can be increased in
comparison with a loss system with the same blocking probability.



𝑃{𝑊 > 𝑡} = 𝑃𝑞𝑒
−(𝑚𝜇−𝜆)𝑡

⇒

𝑃𝑞

100𝑃𝑞 < 𝑒(𝑚𝜇−𝜆)𝑡𝑚𝑎𝑥 ⇒⇒ log(100𝑃𝑞) < (𝑚𝜇 − 𝜆)𝑡𝑚𝑎𝑥
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